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Abstract

Herding behavior in the complex systems is a very interesting and important topic. This claim is backed by
the essential property of such systems - the interactions between distinct parts of the complex system is of
the utmost importance to understand its macroscopic behavior. Generally speaking there may be two very
distinct ways of defining herding behavior - emphasis on the global coupling and emphasis on the individual
interactions. In this contribution we will study these two different approaches and show the similarity of the
asymptotic behavior of the approaches.

Considered models

In this contribution we will considered Kirman’s model, which emphasizes the interaction between two
individual agents, [1] and the GLM model, which considers the interaction with whole community or its
certain, yet rather large, parts, [2]. The ideological scheme of the difference in agent interaction in the
aforementioned models is given in Fig. 1.

Figure 1: Interactions occurring in the Kirman’s (left) andGLM (right) models per single time step,∆t.

Derivation of Kirman’s herding model was inspired by the empirical research done by the entomologists
(see recent review in [3]). In Fig. 2 we show one of the possible experimental setups, two identical paths
connecting ant colony and food source, and ideological scheme behind the Kirman’s model.

Figure 2: Empirical (left; taken from [3]) and model (right)setup of herding in the ant colonies.

Mathematically Kirman’s ideas presented on the right sub-figure are formulated as one step transition prob-
abilties [4]:

p(X → X + 1) = (N −X)(σ1 + hX)∆t, p(X → X − 1) = X [σ2 + h(N −X)]∆t, (1)

whereX is a number of ants using the chosen path, the purpose ofσ andh terms should be evident from the
sub-figure.

Alternative approach was proposed by Goldenberg group [2].They considered production diffusion scenario
and expressed per-agent product adoption probability as:

pGLM(s1 → s2) = 1− (1− Σ)(1−H)N−X , (2)

which reads as probability of the cumulative event oppositeto the not adopting due to individual prefference,
1− Σ, or not being recruited by the agents who have already adopted, (1−H)N−X. Putting it more simply
- its a probability that at least one agent recruited the considered agent. Note that the adoption probability is
defined in certain time window,∆, thusH andΣ are linear functions of∆t [5].

Asymptotic behavior of the Kirman’s and GLM models

Asymptotic behavior of the unidirectionally formulated Kirman’s and GLM models is known [5, 6]. In the
limit of small time steps they both converge towards the Bassdiffusion model:

∂tX(t) = (N −X)

[

σ +
h

N
X(t)

]

, X(0) = 0. (3)

While for larger∆t Kirman’s model becomes undefined, while GLM model starts to behave as lagged Bass
model:

∂tX(t) = (N −X)

[

σ +
h

N
X(t− θ)

]

, X(t) = 0, t < θ, (4)

whereθ = ∆t/2 should hold. The obtained agreement is shown in Fig. 5.
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Figure 3: Kirman’s (blue dots), GLM (red dots) model resultsfitted with the original Bass model (black curve) in the limitof
small∆t (left). GLM (red dots) model results fitted by the lagged Bass(blue curve) model for the larger∆t (right). Model
parameters were set as follows:σ = 0.1, h = 1,N = 104 (in all cases),τ = 0.01 and∆t = 10−8 (left), τ = ∆t = 1 (right).

In case of the bidirectional transition Kirman’s model is well approximated by the following stochastic
differential equation [4, 7]:

dx = [σ1(1− x)− σ2x] dt +
√

2hx(1− x)dW, (5)

wherex = X/N andW is a standard Brownian motion.

The bidirectional GLM model formulation is not known, though it can be easily obtain by relying on the
Kirman’s herding ideas yielding following per-agent transition probabilities:

p(s1 → s2) = 1− (1− σ1∆t)(1− h∆t)N−X , p(s2 → s1) = 1− (1− σ2∆t)(1− h∆t)X . (6)

By expanding them in the limit of small∆t one obtains

p(s1 → s2) ≈ [σ1 + h(N −X)]∆t, p(s2 → s1) ≈ [σ2 + hX ]∆t. (7)

One can go even further by assuming that∆t is actually small enough for only single transition to be prob-
able. In such case one can use the averages of the Binomial distribution to obtain one step transition proba-
bilities for the GLM model, which in fact coincide with (1). Consequently

∆X =

N−X
∑

i=1

ψi[p(s2 → s1)]−
X
∑

i=1

ψi[p(s1 → s2)], (8)

can be shown to be well approximated by the (5) in the same limit. Note that the approximation of the GLM
model by (5) is sufficient only if∆t < N−2. For larger time steps herding tendencies in the GLM model
become weaker or fully disappear (see Fig. 4).
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Figure 4: Stationary probability density function of population fraction,x, in case of strong herding behavior then the model
is solved using small,∼ N−2, (blue curve) and large,∼ N−1, (red curve)∆t values. Model parameters were set as follows:
σ1 = σ2 = 0.1, h = 1,N = 103, κ = 0.1, τdisc = 10−4.

Further we can move towards the GLM model for the absolute return in financial markets. Wallrasian
scenario under the assumption of instantaneous clearing suggests that the absolute return,y, [4] and its
statistical features are given by [7]:

y =
x

1− x
, p(y) ∼ y−

σ2
h −1, Sy(f ) ∼ f−

σ2
h +1. (9)
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Figure 5: Statistical features probability density function (left) and spectral density (right) ofy (red dots) fitted by the theoreti-
cal predictions obtained in [7] (blue curves). Model parameters were set as follows:σ1 = σ2 = 2, h = 1,N = 103, ∆t = 10−7,
τdisc = 10−2.

Conclusions

• GLM and Kirman’s models, in both unidirectional and bidirectional formulations, are equivalent in the
limit of small ∆t. In the same limit both models agree with Bass diffusion model.

• For the larger∆t values the original GLM model might be reconciled with the Bass diffusion model
by introducing time lag into the herding behavior. While thebidirectional GLM model does not posses
correct scaling properties and thus only works well in the same limit Kirman’s model does.

• The bonding between GLM and Kirman’s models serves as a proofthat polling whole population and
random individuals is statistically equivalent.
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