Agent-based modeling

Aleksejus Kononovicius

Institute of Theoretical Physics and Astronomy, Vilnius University
\square aleksejus.kononovicius@tfai.vu.lt \mathcal{V} kononovicius.It, rf.mokslasplius.It

Faculty of Physics

Complex Physical and Social Systems Group

Areas of interest: nonlinear dynamics and synchronization, long-range memory, physics of socio-economic systems.

Physics of Risk blog

Power-law distribution from superposition of normal distributions

魯 March 12. 2024 \& Aleksejus Kononovicius \#Interactive models \#statistics

Last time we have seen that we can recover power-law distribution from a superposition of exponential distributions. This idea served a basis for our [1] paper. When presenting some of these results at a conference I was asked question if exponential distribution is necessary, can't one use normal distribution instead?

The answer to the question I have been posed is yes. Though I wasn't able to answer it at the time. During conferences my brain switch to "general idea" mode, and often misses even most trivial technical details.

Implementing superposition of normal distributions

ibution, but we need to discuss how to do it. First recall that our purpose is to generate ribution. By definition, power-law inter-event times must be positive. Thus we need to in to positive values. Let us implement this restriction as follows: if negative value is new value is sampled from a normal distribution with the same parameter values.
scuss is how the parameter randomization is applied. Notably, the normal distribution s, mean μ and standard deviation σ, and not one (as was the case with exponential ose to randomize either of them or even both of them. The app below allows you to
ost we still assume that parameter values are sampled from a bounded power-law

Physics of risk, complexity and socio-economic systems.

- Subscribe via RSS feed is Follow on Facebook Content @ GitHub
© Theme @ GitHub

EV Vilnius University
\& Faculty of Physics
Institute of Theoretical Physics and Astronomy
(1) COST P10 meeting in Vilnius

The plan

(1) General premise
(2) Rational agents and game theory
(3 Wealth and ideal gasses
(4) Network science
(5) Opinion dynamics

General premise

Agent. . . what?

Models generalize reality.

Agents:

- represent us, or groups of us,
- have defining features, and behaviors,
- may have goals,
- observe and interact with environment,
- observe and interact with peers.

"All models are wrong, but some are useful" (George Box)

Do we really need another modeling framework?

- Agents: passengers

- Environment: plane (aisle, seats, storage)

Output

 Nir $2210 \mathrm{~m}-172$ senta) ecriter
0

Physics? Really?

Forest fire model:

- Forest: ρ density of trees
- Fire: spreads to neighboring trees
- How big will the fire be?
$(\Leftarrow): \rho_{\{\times, \nearrow, \swarrow, \backslash\}}=\{0.4,0.5,0.55,0.6\}$.

Specialized tools

- NetLogo - approachable, custom language
- GAMA - GIS, custom language + Java
- AnyLogic - used in the industry
- Agents.jl - Julia
- Mesa - Python
- Mason - Java, supports GIS
- Repast - Java, supports HPC

Rational agents and game theory

Game theory

Explores interactions between rational and self-interested agents.

Games:

- cooperative or competitive
- (non-)zero sum
- (a)symmetric
- (a)synchronous
- (in)finite

	R	P	S
Rock	0,0	$-1,1$	$1,-1$
Paper	$1,-1$	0,0	$-1,1$
Scissors	$-1,1$	$1,-1$	0,0

Payoff matrix for a r-p-s game

Decision tree of an ultimatum game

Pure strategies (in the TCP backoff game)

	B	C
Back-off	$-1,-1$	$-4,0$
Continue	$0,-4$	$-3,-3$

- What is optimal?
- What is rational?

Some games have no pure strategy...

GK \backslash Taker	L	R
Left	1,0	0,1
Right	0,1	1,0

Matching pennies game

But there might be a mixed strategy. To find it you need to make your opponent not care about their action.

A practical problem for a football manager. . .

GK \backslash Taker	L	R
Left	$0.42,0.58$	$0.07,0.93$
Right	$0.05,0.95$	$0.3,0.7$

(1) Should GK jump left? (Answer: $\left.p_{G K} \approx 0.42\right)$
(2) Should penalty taker shoot left?
(Answer: $p_{T} \approx 0.38$)
(3) Expected outcome? (Answer: $U_{G K} \approx 0.2$)

Solution: moneyball reaction

Quick GK (left) or quick taker (right).

Delving deeper

- More players
- Consecutive games
- Random games
- Behavioral rationality
- More actions

Designing:

- Auctions
- Voting
-...
Resilience:
- Errors
- Manipulations

Wealth and ideal gasses

Kinetic exchange model

(1) Two particles i and j collide.
(2) $\Delta w_{i j}$ energy is transferred:

$$
\begin{aligned}
& w_{i}(t+1)=w_{i}(t)-\Delta w_{i j} \\
& w_{j}(t+1)=w_{j}(t)+\Delta w_{i j}
\end{aligned}
$$

Empirical wealth data

Simplest kinetic exchange model

(1) Two random agents i and j meet.
(2) Wealth is split randomly,

$$
\Delta w_{i j}=(1-\varepsilon) w_{i}-\varepsilon w_{j},
$$

with $\varepsilon \sim \mathcal{U}(0,1)$.
(3) Update wealth.

Interactive app: Physics of Risk

Analytical approach to the model

- The master equation:

$$
\frac{\partial p(w, t)}{\partial t}=\frac{\partial N^{+}(w, t)}{\partial t}-\frac{\partial N^{-}(w, t)}{\partial t}
$$

- Counting "leaving" agents: $\frac{\partial N^{-}(w, t)}{\partial t} \sim 2 p(w, t)$
- Counting "arriving" agents: $\frac{\partial N^{+}(w, t)}{\partial t} \sim 2 \mathbb{P}\left[0<w<w_{i}(t)+w_{j}(t)\right]$
- We care about stationary distribution:

$$
\frac{\partial p_{s t}(w)}{\partial t}=0 \Rightarrow p_{s t}=\mathbb{P}_{s t}[\ldots] \quad \Rightarrow \quad p_{s t}(w)=\frac{1}{\langle w\rangle} \exp \left(-\frac{w}{\langle w\rangle}\right)
$$

Introducing saving propensity

(1) Two random agents i and j meet.
(2) They reserve κ fraction of their wealth. Remaining wealth is split randomly,

$$
\Delta w_{i j}=(1-\kappa)\left[(1-\varepsilon) w_{i}-\varepsilon w_{j}\right]
$$

with $\varepsilon \sim \mathcal{U}(0,1)$.
(3) Update wealth.

Deriving moments

By definition, Ihs and rhs should be equal in distribution:
$w_{i}(t+1) \stackrel{d}{=} \kappa w_{i}(t)+\varepsilon(1-\kappa)\left[w_{i}(t)+w_{j}(t)\right]$
Thus, for the m-th raw moment of a stationary distribution:

$$
\left\langle w^{4}\right\rangle=\frac{72+12 \kappa-2 \kappa^{2}+9 \kappa^{3}-\kappa^{5}}{(1+2 \kappa)^{2}\left(3+6 \kappa-\kappa^{2}+2 \kappa^{3}\right)}
$$

$$
\left\langle w^{m}\right\rangle=\left\langle\left\{\kappa w_{i}+\varepsilon(1-\kappa)\left[w_{i}+w_{j}\right]\right\}^{m}\right\rangle .
$$

Needs to be solved recurrently:
Suggest decent approximation

$$
\left\langle w^{1}\right\rangle=1, \quad \text { with } n=1+\frac{3 \kappa}{1-\kappa}
$$

$$
p(w) \sim w^{n-1} \exp (-n w)
$$

Constructing power-law distribution

It is easy to show that $(0<\alpha<2)$:

But for wealth distribution,

$$
\int_{0}^{\infty}\left[\frac{1}{\lambda^{\alpha}} \cdot \lambda \exp (-\lambda x)\right] d \lambda=\frac{1}{x^{2-\alpha}} . \quad \int_{0}^{1}\left\{p(\kappa) \cdot w^{n(\kappa)-1} \exp [-n(\kappa) w]\right\} d \kappa \propto \frac{1}{w^{2}},
$$

Delving deeper

Wealth / income:

- Compatibility with Economics
- Skills and luck
- Temporal dynamics
- Realistic income mechanisms

But not only wealth / income:

- Opinion dynamics (Biswas-Chatterjee-Sen model)
- Designing ranking systems (ELO)
- Epidemiological models
- Alcohol consumption

Network science

Connections

Images: [Lynn and Basset (2019)], slate.com, Wikimedia.

Main terminology

Network is a collection of nodes and links. Mathematicians prefer terms graph, vertex and edge.

- Neighboring nodes - connected by edges.
- Node's degree - a number of its neighbors.
- Path - sequence of neighboring nodes.
- Geodesic - shortest $i \rightarrow j$ path.
- Diameter - longest geodesic in a network.

Adjacency matrix

- If $A_{i j} \neq 0$, then there exists an edge pointing from j to i.
- Node degree:

$$
\mathbf{A}=\left(\begin{array}{llllll}
0 & 1 & 0 & 0 & 1 & 0 \\
1 & 0 & 1 & 0 & 1 & 0 \\
0 & 1 & 0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 & 1 & 1 \\
1 & 1 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0
\end{array}\right)
$$

$$
k_{i}=\sum_{j=1}^{N} \mathbf{1}_{A_{i j} \neq 0}=\sum_{j=1}^{N} \mathbf{1}_{A_{j i} \neq 0} .
$$

- $\left(\mathbf{A}^{m}\right)_{i j}$ counts all $j \rightarrow i$ paths.

Specific links can be

- looping, if $A_{i i}=1$.
- directional, if $A_{i j} \neq A_{j i}$.
- multiple, if $A_{i j} \in \mathbb{N}_{0}$.
- weighted, if $A_{i j} \in \mathbb{R}$.

Erdos-Renyi (random) network

(1) Start with N nodes and $L=0$ edges.
(2) Iterate over all possible pairs. Add edge with probability p.

Edges on average:

$$
\langle L\rangle=p N(N-1) / 2 .
$$

Average degree:

$$
\langle k\rangle=2 L / N=p(N-1) .
$$

Phase transition in E-R network

If node i belongs to giant component, then its neighbor j is also in it.

Probability to not be in g.c.:

$$
u=[1-(1-u) p]^{N-1},
$$

$$
\frac{N_{G}}{N}=1-\exp \left[-\langle k\rangle \frac{N_{G}}{N}\right] .
$$

Randomness creates reach

Watts-Strogatz network

W-S network: Introduce random edges into a regular structure.

Scale-free networks

Preferential attachment:

$$
p(i \rightarrow j)=\frac{k_{j}}{\sum_{m} k_{m}}
$$

Edge redirection: r

Minimal costs:
$\min _{j}\left(\delta d_{i j}+h_{j}\right)$

Continuum method

Expected degree of j-th node,

$$
\begin{aligned}
\frac{d k_{j}}{d t} & =m p(t \rightarrow j)=m \frac{k_{j}}{\sum_{m} k_{m}}, \\
& \Rightarrow \quad k_{j}(t) \approx m \sqrt{\frac{t}{j}} .
\end{aligned}
$$

Rearrangement gives us

$$
j=N_{k_{i}>k}=\frac{m^{2} t}{k^{2}}
$$

Delving deeper

Further general topics:

- Degree correlations
- Clustering
- Evolving networks
- Centrality and influence
- Strategic network formation
- Communities and their detection

Recent research directions:

- Temporal evolution
- Multi-layer networks
- Hyper-graphs
- Higher-order networks
- Predicting missing edges
- Reconstructing processes

Opinion dynamics

Topic, not a tool

- Elections, polls, census data
- Online discussion
- Collective behavior
- Laboratory experiments

Images: Gizmodo, Wikimedia, Wikimedia

Different kinds of models

Figure: [Jedrzejewski and Sznajd-Weron (2019)]

Opinion vector: Axelrod model

- Opinion is given by d-dimensional vector.
- Each component may take q distinct values.
(1) Choose a random agent i.
(2) Choose a random neighbor j.
(3) Interaction probability is proportional to the number of shared components.
(4) During interaction i copies a single component from j.

Continuous opinions: bounded confidence models

- Agents have continuous opinion x_{i}.
- Interactions between i and j are occur only if

$$
\left|x_{j}(t)-x_{i}(t)\right|<\varepsilon .
$$

- During interaction

$$
x_{i}(t+1)=x_{i}(t)+\mu\left[x_{j}(t)-x_{i}(t)\right]
$$

Review: [Flache et al.(2017)]. Interactive app: Physics of Risk

Discrete opinion: Galam models

- Opinion is a discrete label
- Interactions occur in randomized groups:
- All group members align with group's majority opinion
- If group has no majority, then group members align with global minority.

Agents are randomly selected from the population to form the ground people

Image/review: [Galam (2008)]. Interactive app: Physics of Risk

Noisy voter model

- Discrete (often) binary opinions
- Agents may change their opinion independently
- Agents may change their opinion by imitating their peers
- Interactions may occur on a complete network or another arbitrary social network

σ

h

It is a birth-death process

We can formalize NVM using birth and death rates:

$$
\lambda^{+}(X)=(N-X)\left[\sigma^{+}+h \frac{X}{N^{\alpha}}\right], \quad \lambda^{-}(X)=X\left[\sigma^{-}+h \frac{N-X}{N^{\alpha}}\right] .
$$

Master equation:

$$
\begin{aligned}
\frac{\Delta p(X, t)}{\Delta t}= & -\lambda^{+}(X) p(X, t)-\lambda^{-}(X) p(X, t)+ \\
& +\lambda^{+}(X-1) p(X-1, t)+ \\
& +\lambda^{-}(X+1) p(X+1, t) .
\end{aligned}
$$

Thermodynamic $(N \rightarrow \infty)$ limit

Rewrite rates:

$$
\lambda_{s}^{+}(x)=N^{2} \cdot(1-x)\left[\frac{\varepsilon^{+}}{N}+\frac{x}{N^{\alpha}}\right], \quad \lambda_{s}^{-}(x)=N^{2} \cdot x\left[\frac{\varepsilon^{-}}{N}+\frac{1-x}{N^{\alpha}}\right] .
$$

Master equation:

$$
\begin{aligned}
\frac{\Delta p\left(x, t_{s}\right)}{\Delta t_{s}}= & -\lambda_{s}^{+}(x) p\left(x, t_{s}\right)-\lambda_{s}^{-}(x) p\left(x, t_{s}\right) \\
& +\lambda_{s}^{+}(x-\Delta x) p\left(x-\Delta x, t_{s}\right)+\lambda_{s}^{-}(x+\Delta x) p\left(x+\Delta x, t_{s}\right)= \\
= & \left(\mathbf{E}^{+}-1\right)\left[\lambda_{s}^{-}(x) p\left(x, t_{s}\right)\right]+\left(\mathbf{E}^{-}-1\right)\left[\lambda_{s}^{+}(x) p\left(x, t_{s}\right)\right]
\end{aligned}
$$

Here: $\mathbf{E}^{ \pm} f(x)=f(x \pm \Delta x) \approx f(x) \pm \Delta x f^{\prime}(x)+\frac{(\Delta x)^{2}}{2} f^{\prime \prime}(x)$.

Fokker-Planck equation

$$
\begin{aligned}
\frac{\partial p\left(x, t_{s}\right)}{\partial t_{s}} & \approx-\frac{\partial}{\partial x}\left[\frac{\lambda_{s}^{+}(x)-\lambda_{s}^{-}(x)}{N} p\left(x, t_{s}\right)\right]+\frac{1}{2} \frac{\partial^{2}}{\partial x^{2}}\left[\frac{\lambda_{s}^{+}(x)+\lambda_{s}^{-}(x)}{N^{2}} p\left(x, t_{s}\right)\right] \approx \\
& \approx-\frac{\partial}{\partial x}\left[\left\{\varepsilon^{+}(1-x)-\varepsilon^{-} x\right\} p\left(x, t_{s}\right)\right]+\frac{1}{2} \frac{\partial^{2}}{\partial x^{2}}\left[\frac{2 x(1-x)}{N^{\alpha}} p\left(x, t_{s}\right)\right] .
\end{aligned}
$$

Stationary distribution (with $\alpha=0$):

$$
\begin{gathered}
0=-\left\{\varepsilon^{+}(1-x)-\varepsilon^{-} x\right\} p_{s t}(x)+\frac{d}{d x}\left[x(1-x) p_{s t}(x)\right] \Rightarrow \\
p_{s t}(x)=C_{N} \cdot x^{\varepsilon^{+}-1}(1-x)^{\varepsilon^{--1}} .
\end{gathered}
$$

Beta distribution fits empirical data

Party (SK (a), LKDP (b) and LDDP (c)) vote shares in Lithuanian 1992 parliamentary election.

PHYSICAL REVIEW LETTERS

Highilghts Recent Accepted Collections Authors Referees Search Press About a

Fonture:In Fhy gles Eatiora' Sugazalion

Is the Voter Model a Model for Voters?
Juan Fernández-Gracia, Kızysztof Suchecki, José J. Ramasco, Maxi San Miguel, and Victor M. Eguiluz
Phys. Rev. Lett. 112, 158701-Published 18 Aprll 2014; Erratum Phys Rev. Lett. 113, 089903 (2014)

Lithuanian 2022 municipality election results map.

Delving deeper

- q-voter model
- Multi-state voter model
- Non-Markovian dynamics
- Polarization (physicsworld.com)
- Dynamics on networks
- Compatibility with social sciences

Thank you!

\square aleksejus.kononovicius@tfai.vu.It \mathcal{V} kononovicius.It, rf.mokslasplius.lt

Faculty of Physics

