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… is a combination of assets or investment
instruments. 

• In this talk I will focus on equity portfolios.
• Rational portfolio selection seeks a tradeoff

between risk and reward.
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Risk and reward

• Financial reward can be measured in terms
of the return of log return:

or

• The characterization of risk is more 
controversial



The most obvious choice for a risk
measure: Variance

• Variance is the average quadratic deviation from
the average – a time honoured statistical tool

• Its use assumes that the probability distribution
of the returns is sufficiently concentrated around
the average, that there are no large fluctuations

• This is true in several instances, but we often
encounter „fat tails”, huge deviations with a 
non-negligible probability.
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Alternative risk measures
• There are several alternative risk measures in use in

the academic literature, practice, and regulation
• Value at risk (VaR): the best among the p% 

worst losses (not convex, punishes diversification)
• Mean absolute deviation (MAD): Algorithmics
• Coherent risk measures (promoted by academics):

Expected shortfall (ES): average loss beyond a 
high threshold
Maximal loss (ML): the single worst case
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A portfolio is…

a weighted average of assets, with a set of
weights wi that add up to unity (the budget
constraint). 

• The weights are not necessarily positive –
short selling

• If there is no condition on the weights other
than the budget constraint, then the domain
over which the optimum is sought is 
unbounded



A portfolio is…

a weighted average of assets, with a set of
weights wi that add up to unity (the budget
constraint). 

• The weights are not necessarily positive –
short selling

• If there is no condition on the weights other
than the budget constraint, then the domain
over which the optimum is sought is 
unbounded



A portfolio is…

a weighted average of assets, with a set of
weights wi that add up to unity (the budget
constraint). 

• The weights are not necessarily positive –
short selling

• If there is no condition on the weights other
than the budget constraint, then the domain
over which the optimum is sought is
unbounded



The variance of a portfolio

- a quadratic form of the weights. The 
coefficients of this form are the elements of
the covariance matrix that measures the co-
movements between the various assets.
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Markowitz’ portfolio selection
theory

Rational portfolio selection realizes the
tradeoff between risk and reward by
minimizing the risk functional over the
weights, given the expected return, the
budget constraint, and possibly other
costraints.



How do we know the returns and the
covariances?

• In principle, from observations on the market
• If the portfolio contains N assets, we need O(N²)

data
• The input data come from T observations for N

assets
• The estimation error is negligible as long as

NT>>N², i.e. N<<T
• In practice T is never longer than 4 years, i.e. 

T~1000, whereas in a typical banking portfolio N
is several hundreds or thousands.

• N<<T is therefore never fulfilled in practice.
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• Thus the Markowitz problem suffers from

the „curse of dimensions”, or from
information deficit

• The estimates will contain error and the
resulting portfolios will be suboptimal

• How serious is this effect?
• How sensitive are the various risk measures

to this kind of error?
• How can we reduce the error?
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Fighting the curse of dimensions
• Economists have been struggling with this problem for

ages. Since the root of the problem is lack of sufficient
information, the remedy is to inject external info into the
estimate. This means imposing some structure on σ. This
introduces bias, but beneficial effect of noise reduction
may compensate for this.

• Examples:
- single-index models (β’s) All these help to
- multi-index models various degrees.
- grouping by sectors Most studies are based
- principal component analysis on empirical data
- Bayesian shrinkage estimators, etc.
- Random matrix theory



Our approach:
• To test the noise sensitivity of various risk 

measures we use simulated data
• The rationale behind this is that in order to be 

able to compare the sensitivity of various risk 
measures to noise, we better get rid of other 
sources of uncertainty, like non-stationarity. 
This can be achieved by using artificial data 
where we have total control over the 
underlying stochastic process.

• For simplicity, we use iid normal variables in
the following.
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• For such a simple underlying process the
exact risk measure can be calculated.

• To construct the empirical risk measure, we
generate long time series, and cut out 
segments of length T from them, as if
making observations on the market.

• From these „observations” we construct the
empirical risk measure and optimize our
portfolio under it.

• The ratio qo of the empirical and the exact
risk measure is a measure of the estimation
error due to noise.
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Sample to sample fluctuations

• The relative error of the optimal
portfolio is a random variable, fluctuating
from sample to sample.

• The weights of the optimal portfolio also
fluctuate.

0q



The distribution of qo over the samples



The expectation value of qo as a function
of N/T



The critical point: N /T = 1

• As N approaches T, the relative error is increasing
and diverges at the critical point N=T.

• The expectation value of the error can be shown to
be:

• This formula was first published by Sz. Pafka and 
I.K.

• The variance of the distribution of qo diverges even
more strongly, with an exponent -3/4. 

T
N

q
−

=
1
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Fluctuation of weights

• The weights wildly fluctuate within a given
sample as well as from sample to sample.

• The optimization hardly determines the
weights even far from the critical point! 

• The standard deviation of the weights relative
to their exact average value also diverges at
the critical point



If short selling is banned
If the weights are constrained to be positive, the

instability will manifest itself by more and more 
weights becoming zero – the portfolio
spontaneously reduces its size!

Explanation: the solution would like to run away, 
the constraints prevent it from doing so, 
therefore it will stick to the walls.

Similar effects are observed if we impose any other
linear constraints, like bounds on sectors, etc.

It is clear, that in these cases the solution is 
determined more by the constraints than the
objective function.
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If the variables are not iid

Experimenting with various market models
(one-factor, market plus sectors, positive
and negative covariances, etc.) shows that
the main conclusion does not change. 

Overwhelmingly positive correlations tend to
enhance the instability, negative ones
decrease it, but they do not change the
power of the divergence, only its prefactor
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After filtering the noise is much reduced, and we can
even penetrate into the region below the critical

point T<N



Similar studies under mean absolute deviation, 
expected shortfall and maximal loss

• Lead to similar conclusions, except that the
effect of estimation error is even more serious

• In addition, no convincing filtering methods
exist for these measures

• In the case of coherent measures the existence of
a solution becomes a probabilistic issue, 
depending on the sample

• Calculation of this probability leads to some
intriguing problems in random geometry
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A wider context
• Hard computational problems (combinatorial optimization, 

random assignment, graph partitioning, satisfiability): the
length of the algorithm grows exponentially with the size
of the problem. These are practically untractable.

• Their difficulty may depend on some internal parameter
(e.g. the density of constraints in a satisfiability problem)

• Recently it has been observed that the difficulty does not
change gradually with the variations of this parameter, but
there is a critical value where the problem becomes hard
abruptly

• This critical point is preceded by a number of critical
phenomena
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• The critical phenomena we observe in
portfolio selection are analogous to these, 
they represent a new „random Gaussian” 
universality class within this family, where
a number of modes go soft in rapid 
succession, as one approaches the critical
point.

• Filtering corresponds to discarding these
soft modes.
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Similar examples from everyday
life, and …
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