Critical Exponents of 3D Ising Model from Theory and Monte Carlo Simulations of Very Large Lattices

Jevgenijs Kaupužs

kaupuzs@latnet.lv

Institute of Mathematics and Computer Science

University of Latvia

Reorganized perturbation theory

(Ann. Phys. (Leipzig) 10 (2001) 299) Consider φ^4 model with the Hamiltonian

$$H/T = \int \left(r_0 \varphi^2(\mathbf{x}) + c(\nabla \varphi(\mathbf{x}))^2 + u \varphi^4(\mathbf{x}) \right) d\mathbf{x} ,$$

Grouping of Feynman diagrams \Rightarrow the Dyson equation

$$\frac{1}{2G_i(\mathbf{k})} = r_0 + ck^2 - \frac{\partial D(G)}{\partial G_i(\mathbf{k})} + \vartheta_i(\mathbf{k})$$

for the correlation function $\langle \varphi_i(\mathbf{k}) \varphi_j(-\mathbf{k}) \rangle = \delta_{ij} G_i(\mathbf{k})$. Here D(G) is the (resummed) sum of grouped skeleton diagrams constructed of the fourth order vertices $\rightarrow --- <$, including *all* original diagrams of φ^4 perturbations.

Advantages

- The method allows to make certain analysis without cutting the series \implies exact critical exponents.
- The asymptotics of $G(\mathbf{k})$ is found *directly as an* expansion in powers of k avoiding doubtful intermediate expansions in divergent parameters like $\ln k$.

The latter problem is not satisfactory solved in the perturbative RG approach. $\ln k$ diverges at $k \to 0$ and the RG method is not correct, since a contradiction can be derived! – Sec. 2 in Ann. Phys. (Leipzig) 10 (2001) 299. 1) correction-to-scaling for $1/[k^2G(\mathbf{k})]$ is $\delta X(\mathbf{k},\mu) = \mathcal{O}(\epsilon^2)$, as obtained from a first-principles equation assuming the Wilson–Fisher fixed point; 2) we get $\delta X(\mathbf{k},\mu) = \mathcal{O}(\epsilon)$ by matching coefficients at $\ln k$, since $\omega = \epsilon + \mathcal{O}(\epsilon^2)$.

Critical exponents

Critical exponents predicted by grouping of Feynman diagrams: for n = 1, 2, ..., d < 4 (only n = 1 for d = 2)

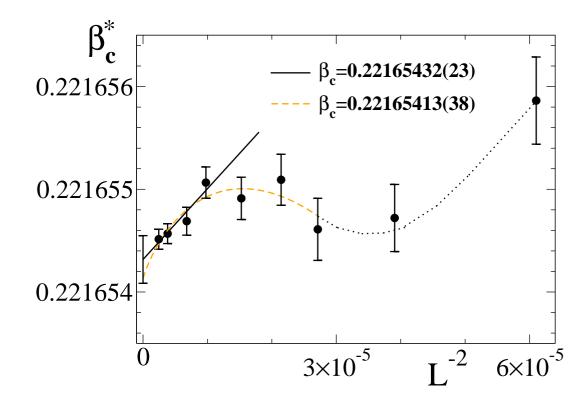
$$\gamma = \frac{d+2j+4m}{d(1+m+j)-2j} \qquad \nu = \frac{2(1+m)+j}{d(1+m+j)-2j} ,$$

where $m \ge 1$ and $j \ge -m$ are integers. It reproduces the know exact critical exponents of 2D Ising model (m = 3, j = 0), the mean-field exponents at $d \to 4$ (any j and m), as well as those of the spherical model ($j/m \to \infty$).

The Ising case: m = 3, $j = 0 \Rightarrow \gamma = 7/4$, $\nu = 1$ at d = 2 and $\gamma = 5/4$, $\nu = 2/3$ ($\alpha = 0$, $\eta = 1/8$, $\beta = 3/8$) at d = 3.

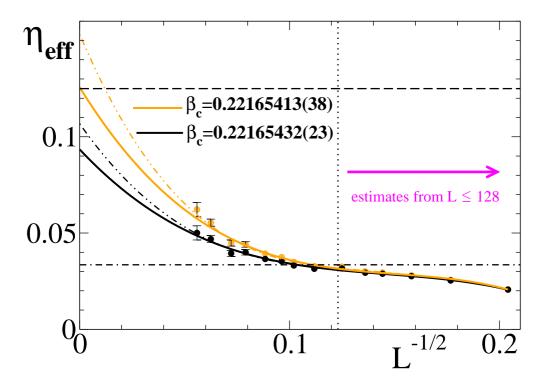
The conventional (RG) values: $\gamma \simeq 1.24$, $\nu \simeq 0.63$, $\alpha \simeq 0.11$ $\eta \simeq 0.0335$, $\beta \simeq 0.326$.

Estimation of the critical coupling



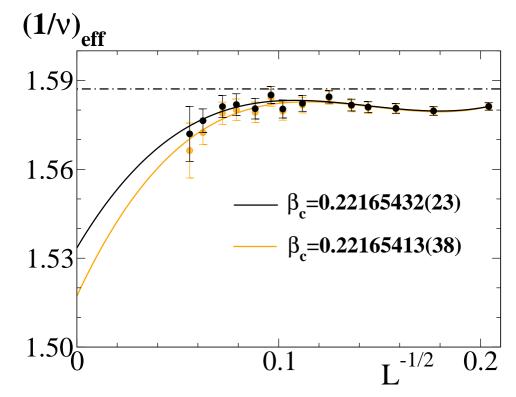
Couplings $\beta_c^*(L)$ (\approx Binder cumulant crossing points) obtained from $\tilde{\beta}_c(L_1)$ data at $L_1 = L, L/2$ with $128 \leq L \leq 640$, where $\tilde{\beta}_c(L)$ correspond to $U = \langle m^4 \rangle / \langle m^2 \rangle^2 = 1.6$. The $L^{-(1/\nu)-\omega}$ convergence to β_c is expected. Estimation with $\nu = 2/3$ and $\omega = 1/2$ (shown) yields $\beta_c = 0.22165432(23)$ (linear fit) and $\beta_c = 0.22165413(38)$ (nonlinear fit). $\nu = 0.63$ and $\omega = 0.8$ gives $\beta_c = 0.22165438(18)$ and $\beta_c = 0.22165429(25)$, respectively.

Estimation of η **in 3D Ising model**



The effective critical exponent η_{eff} vs $L^{-1/2}$ estimated from susceptibility data at $\beta = \beta_c$ for each pair of sizes (2L; L/2) according to $\chi \sim L^{2-\eta}$. The simulated range of sizes [12; 640]. Our theoretical value $\eta = 1/8$ (dashed line), the RG value $\eta \simeq 0.0335$ (dot-dashed line).

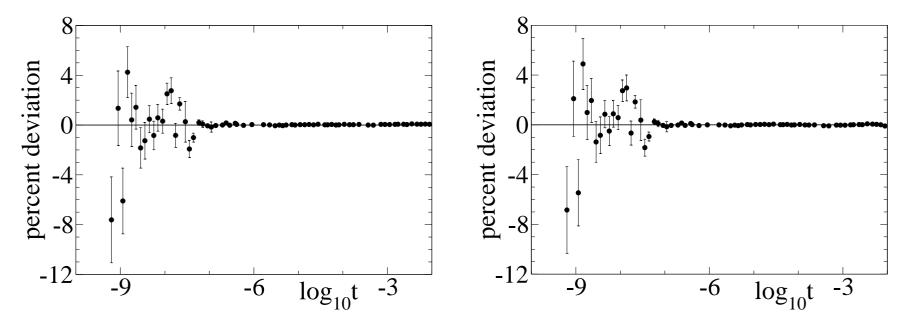
Estimation of ν **in 3D Ising model**



The effective critical exponent $(1/\nu)_{\text{eff}}$ vs $L^{-1/2}$ estimated from the derivative of $\langle m^2 \rangle^2 / \langle m^4 \rangle$ at $\beta = \beta_c$ (with $\sim L^{1/\nu}$ scaling) for each pair of sizes (2L; L/2). The simulated range [12; 640]. Our theoretical value $1/\nu = 1.5$, the RG value $1/\nu \simeq 1.587$ (dot-dashed line).

Comparison to C_p **data in liquid helium**

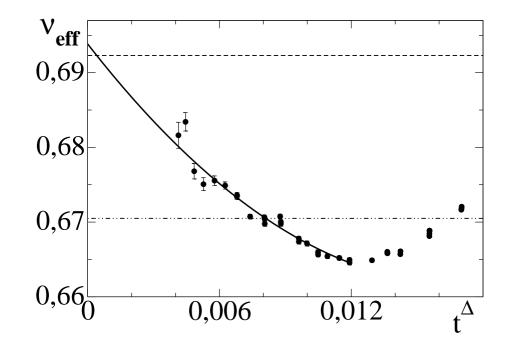
(following experiments by J. A. Lipa, et. al, see Phys. Rev. B 68, 174518 (2003))



Eur. Phys. J. B 45, 459 (2005): percent deviation from

$$C_{p} = \frac{A}{\alpha} t^{-\alpha} \left(1 + at^{\Delta} + bt^{2\Delta} \right) + B, \ \alpha = -0.0127, \Delta = 0.529 \text{ (left)}$$
$$C_{p} = t^{-\alpha} (C + A \ln t) \left(1 + at^{\Delta} \right) + B, \ \alpha = -1/13, \Delta = 5/13 \text{ (right)}$$

ν from superfluid fraction in liquid He



Eur. Phys. J. B **45**, 459 (2005): The effective exponent ν_{eff} depending on t^{Δ} (with $\Delta = 5/13$) evaluated from local slopes of $\ln \rho$ vs. $\ln t$ plot. The lower line – (RG) value 0.6705, the upper line – our theoretical value $\nu = 9/13$.

Data taken from L. S. Goldner, N. Mulders, G. Ahlers, J. Low Temperature Phys. **93**, 131 (1993).