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Reorganized perturbation theory

(Ann. Phys. (Leipzig) 10 (2001) 299)
Consider ϕ4 model with the Hamiltonian

H/T =

∫

(

r0ϕ
2(x) + c(∇ϕ(x))2 + uϕ4(x)

)

dx ,

Grouping of Feynman diagrams ⇒ the Dyson equation

1

2Gi(k)
= r0 + ck2 −

∂D(G)

∂Gi(k)
+ ϑi(k)

for the correlation function 〈ϕi(k) ϕj(−k)〉 = δij Gi(k) . Here
D(G) is the (resummed) sum of grouped skeleton diagrams
constructed of the fourth order vertices a

!
q q!

a ,
including all original diagrams of ϕ4 perturbations.
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Advantages

The method allows to make certain analysis without
cutting the series =⇒ exact critical exponents.

The asymptotics of G(k) is found directly as an
expansion in powers of k avoiding doubtful intermediate
expansions in divergent parameters like ln k.

The latter problem is not satisfactory solved in the
perturbative RG approach. ln k diverges at k → 0 and the
RG method is not correct, since a contradiction can be
derived! – Sec. 2 in Ann. Phys. (Leipzig) 10 (2001) 299.
1) correction-to-scaling for 1/[k2G(k)] is δX(k, µ) = O(ǫ2), as
obtained from a first-principles equation assuming the
Wilson–Fisher fixed point; 2) we get δX(k, µ) = O(ǫ) by
matching coefficients at ln k, since ω = ǫ + O(ǫ2).
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Critical exponents

Critical exponents predicted by grouping of Feynman
diagrams: for n = 1, 2, . . ., d < 4 (only n = 1 for d = 2)

γ =
d + 2j + 4m

d(1 + m + j) − 2j
ν =

2(1 + m) + j

d(1 + m + j) − 2j
,

where m ≥ 1 and j ≥ −m are integers. It reproduces the
know exact critical exponents of 2D Ising model (m = 3,
j = 0), the mean–field exponents at d → 4 (any j and m), as
well as those of the spherical model (j/m → ∞).

The Ising case: m = 3, j = 0 ⇒ γ = 7/4, ν = 1 at d = 2 and
γ = 5/4, ν = 2/3 (α = 0, η = 1/8, β = 3/8) at d = 3.

The conventional (RG) values: γ ≃ 1.24, ν ≃ 0.63, α ≃ 0.11
η ≃ 0.0335, β ≃ 0.326.

Critical Exponents of 3D Ising Model from Theory andMonte Carlo Simulationsof Very Large Lattices – p.4/9



Estimation of the critical coupling
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Couplings β∗

c (L) (≈ Binder cumulant crossing points) obtained from β̃c(L1) data at

L1 = L, L/2 with 128 ≤ L ≤ 640, where β̃c(L) correspond to U = 〈m4〉/〈m2〉2 = 1.6. The

L−(1/ν)−ω convergence to βc is expected. Estimation with ν = 2/3 and ω = 1/2 (shown)

yields βc = 0.22165432(23) (linear fit) and βc = 0.22165413(38) (nonlinear fit).

ν = 0.63 and ω = 0.8 gives βc = 0.22165438(18) and βc = 0.22165429(25) , respectively.
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Estimation of η in 3D Ising model
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estimates from L     128<_

The effective critical exponent ηeff vs L−1/2 estimated from
susceptibility data at β = βc for each pair of sizes (2L;L/2)

according to χ ∼ L2−η. The simulated range of sizes
[12; 640]. Our theoretical value η = 1/8 (dashed line), the RG
value η ≃ 0.0335 (dot-dashed line).
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Estimation of ν in 3D Ising model
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The effective critical exponent (1/ν)eff vs L−1/2 estimated
from the derivative of 〈m2〉2/〈m4〉 at β = βc (with ∼ L1/ν

scaling) for each pair of sizes (2L;L/2). The simulated
range [12; 640]. Our theoretical value 1/ν = 1.5, the RG
value 1/ν ≃ 1.587 (dot-dashed line).
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Comparison toCp data in liquid helium

(following experiments by J. A. Lipa, et. al, see Phys. Rev. B 68, 174518 (2003))
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Eur. Phys. J. B 45, 459 (2005): percent deviation from

Cp =
A

α
t−α

(

1 + at∆ + bt2∆

)

+B, α = −0.0127,∆ = 0.529 (left)

Cp = t−α(C+A ln t)
(

1 + at∆
)

+B, α = −1/13,∆ = 5/13 (right)
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ν from superfluid fraction in liquid He
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Eur. Phys. J. B 45, 459 (2005): The effective exponent νeff
depending on t∆ (with ∆ = 5/13) evaluated from local
slopes of ln ρ vs. ln t plot. The lower line – (RG) value
0.6705, the upper line – our theoretical value ν = 9/13.

Data taken from L. S. Goldner, N. Mulders, G. Ahlers,
J. Low Temperature Phys. 93, 131 (1993).
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