SOME STYLIZED FACTS REVISITED: CONSEQUENCES FOR FLUCTUATION SCALING

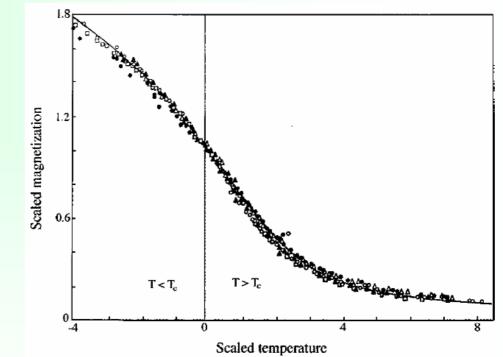
János Kertész and Zoltán Eisler Institute of Physics Budapest Univ. of Technology and Economics

Outline

- Universality in Physics (!) and Finance (?)
- Fluctuation scaling universality classes
- Fluctuation (multi-)scaling in finance
- Volume scaling revisited
- Size matters: Non-universal scaling
- Conclusions

Universality in physics

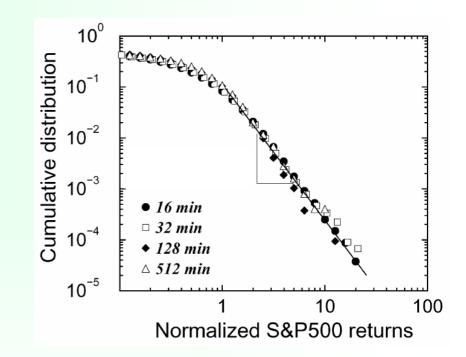
- 5 different magnetic materials (CrBr₃, EuO, Ni, YIG, Pd₃Fe)
- the curves collapse



- "different systems behave the same"
- power law behavior, e.g., $M \propto H^{1/\delta}$

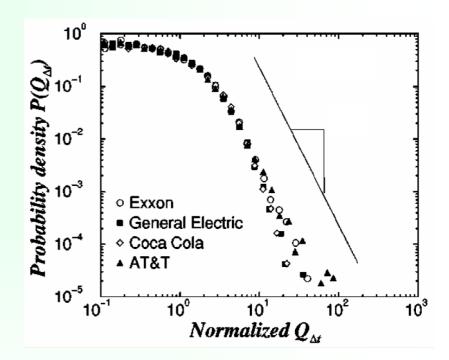
Universality in finance

- the "inverse cube law"
 - price changes (returns)
 - 1000 NYSE companies
 - outside Levy regime



Universality in finance?

- the "inverse half cube law"
 - trading volume (Q) or value (f)
 - Levy stable regime



Delicate questions related to extrapolation

P. Gopikrishnan et al., Phys. Rev. E 62, 4493 (2000)

Fluctuation scaling

Activity at site *i* in a multi-channel observation: $f_i(t)$

E.g. traffic at induction loops, web-site visits,

packages through a router, current at a circ. element...

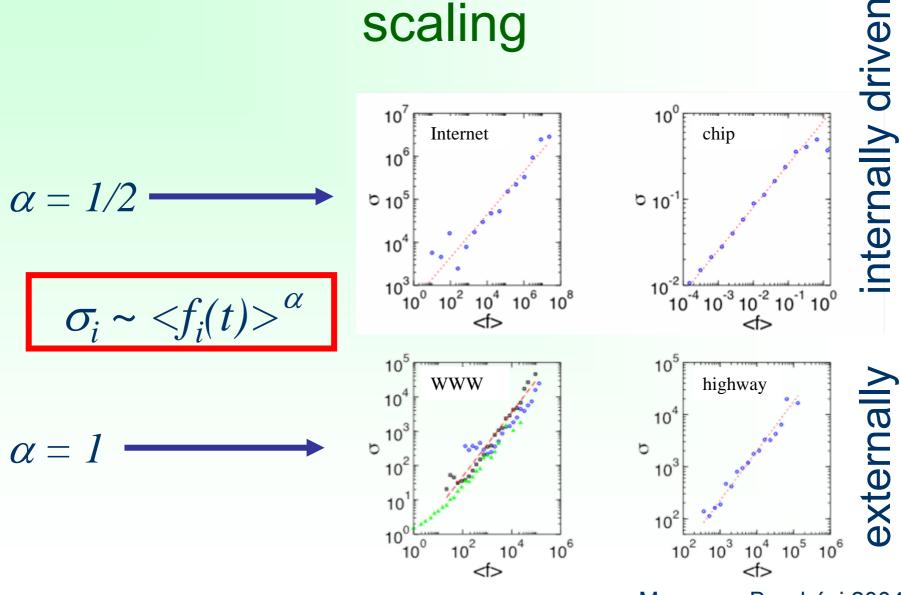
Fluctuation scaling:

$$\sigma_i \sim \langle f_i(t) \rangle^{\alpha}$$

Found in many systems

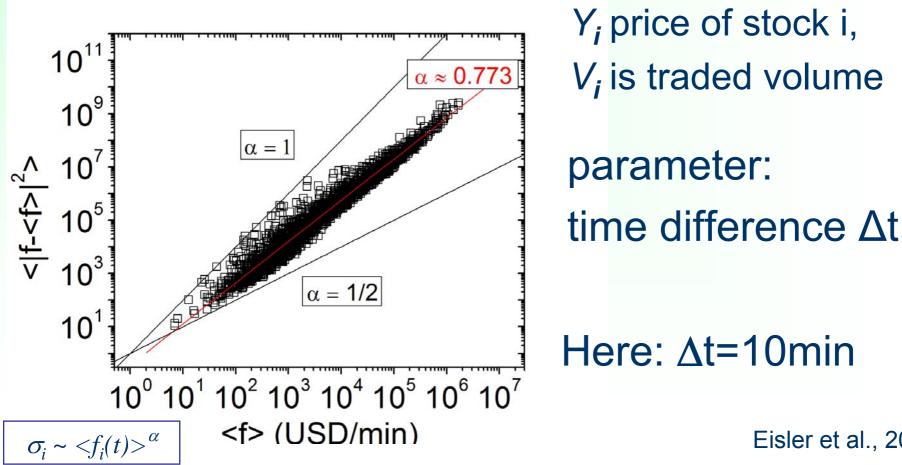
Menezes, Barabási 2004

Universality classes in fluctuation scaling



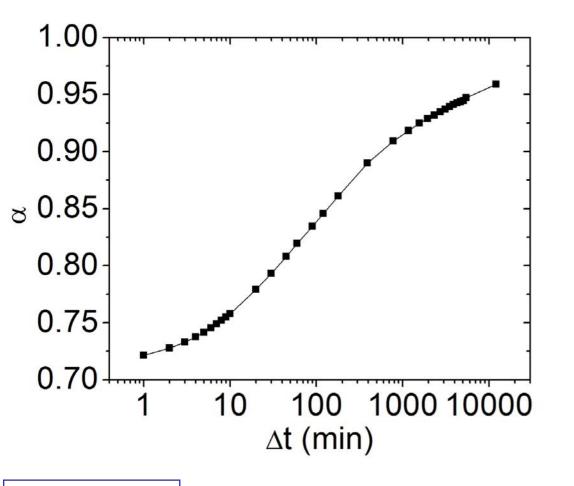
Menezes, Barabási 2004

Fluctuation scaling in stock market data $f_i^{\Delta t}(t) = \sum Y_i(\tau)V_i(\tau)$ Activity: flow $\tau \in [t,t+\Delta t]$



Eisler et al., 2005

Results for stock market data

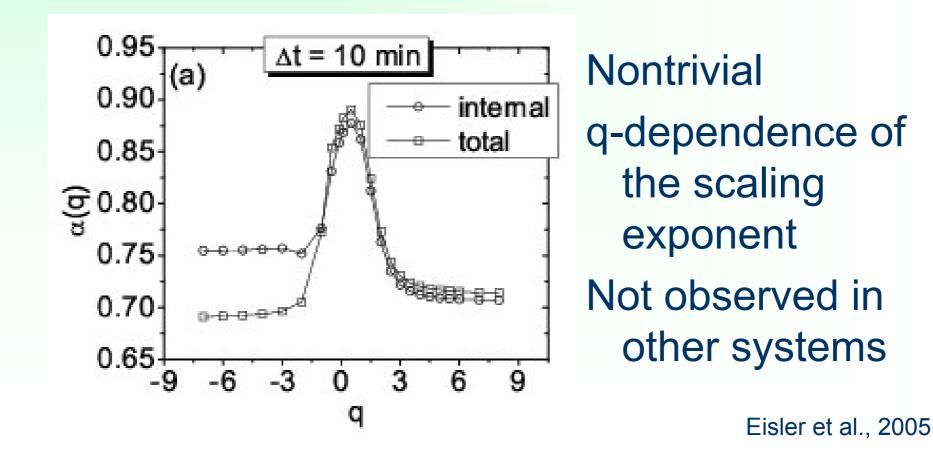


∆t-dependent, non-universal exponents

 $\sigma_i \sim \langle f_i(t) \rangle^{\alpha}$

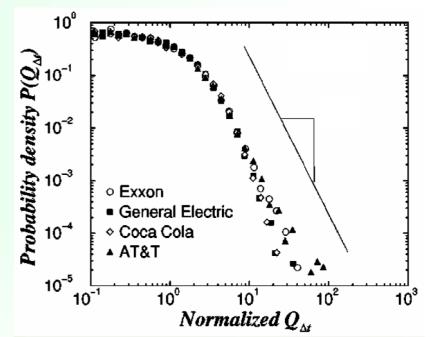
Multiscaling in stock market data

$$\left\langle \left| f_{i} - \left\langle f_{i} \right\rangle \right|^{q} \right\rangle = C_{f}^{q}(q;) \left\langle f_{i} \right\rangle^{q \alpha(q;)}$$



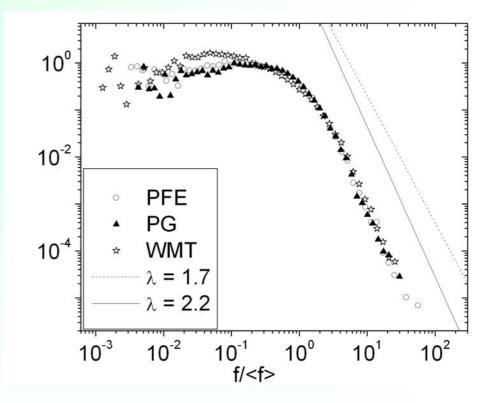
The distribution of traded value

- the "inverse cube half law"
 - trading volume (Q) or value (f)
 - Levy stable regime: No second moment!



The distribution of traded value

- analysis of 1000 top companies using extensions of Hill's method
- tail exponent greater than 2
 - Gaussian stable regime



Beyond averages: The distribution of traded value

- fat tails
- tail exponent greater than 2
- analysis of 1000 top companies
- increasing effective exponents
 - Gaussian stable regime

Δt	λ
1 min	2.4 ± 0.23
5 min	2.8 ± 0.5
15 min	3.1 ± 0.6
60 min	3.45 ± 0.8
120 min	3.8 ± 1.1
390 min	5.1 ± 0.8

Non-universal correlations of traded value (1)

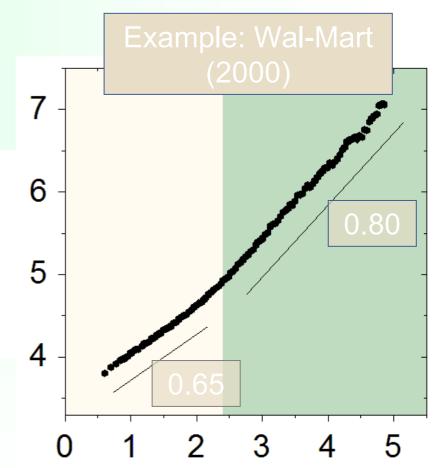
- The measured tail exponents are larger than 2
 - standard deviation exists on all time scales
 - for a stock *i*, the Hurst exponent *H(i)* can be defined as

$$\sigma_{i}(\Delta t) = \left\langle \left(f_{\Delta t} - \left\langle f_{\Delta t} \right\rangle\right)^{2} \right\rangle = C_{i} \Delta t^{H(i)}$$

- persistent: H > 0.5
- uncorrelated: H = 0.5

Non-universal correlations of traded value (2)

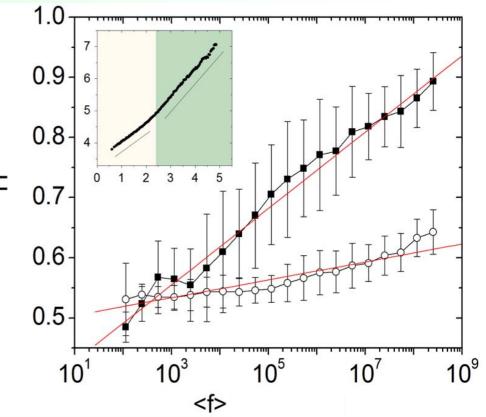
- Stocks display a crossover
 - at ∆t ≈ 390 min = 1 day
 - from weaker to stronger correlation



Z. Eisler, J. Kertész, arXiv:physics/0508156

Capitalization dependence

- H non-universal!
- depends on $\langle f \rangle$ which is a monotonous function $_{\rm T}$ of the company size
 - γ(Δt < 250 min) = 0.016 ± 0.001
 - γ(Δt > 630 min) =
 0.063 ± 0.002



$$H(\langle f \rangle) = H(\langle f \rangle = 1) + \gamma \log\langle f \rangle$$

Z. Eisler, J. Kertész, arXiv:physics/0508156

Non-universal correlations of traded value (3)

- $\langle f \rangle$ strongly depends on capitalization
 - capitalization acts as a parameter that determines the strength of correlations present in trading activity
 - the effect is weak on an intraday scale
 - it is much stronger for day-to-day fluctuations
- a clear logarithmic law: only the order of magnitude matters!

$$H(\langle f \rangle) = H(\langle f \rangle = 1) + \gamma \log\langle f \rangle$$

Z. Eisler, J. Kertész, arXiv:physics/0508156

Relation to fluctuation scaling

$$\sigma_{i}(\Delta t) = \left\langle \left(f_{\Delta t} - \left\langle f_{\Delta t} \right\rangle \right)^{2} \right\rangle = C_{i} \Delta t^{H(i)}$$

$$\sigma_i \sim \langle f_i(t) \rangle^{\alpha}$$

- A self-consistent scheme
- γ the same for both scalings
- Multiscaling in *∆t* too
- For details see
- Eisler and Kertész: PRE & EJP (in press) + archive

Summary

- Scaling and universality concepts have to be handled with care in finance
- No inverse cube half law -> 2-nd moment of volume distribution exists
- Size matters! log dependence of H
- Fluctuation (multi-)scaling observed
- Related to volume (multi-)scaling

THANK YOU