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Multifractality and self-similarity

Hypothesis of fractionallity or self–similarity 
arises due to that financial series are not properly 
described by Gaussian models.
The Hurst exponent is used to characterize 
fractionallity.



Multifractality and self-similarity

The process with the Hurst index H=½
corresponds to the Brownian motion when 
variance increases at the rate of , where t is 
the amount of time. Indeed, in real data this 
growth rate (Hurst exponent) is longer
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Hurst index

There are many methods to evaluate Hurst
index but in literature the following are 
usually used:

• Time-domain estimators (Absolute Value 
method(Absolute Moments),Variance method (Aggregate 
Variance), R/S method, Variance of Residuals);

• Frequency-domain/wavelet-domain estimators 
(Periodogram method ,Whittle,Abry-Veitch (AV) ).



Multifractality and self-similarity

As 0.5<H≤1, the Hurst exponent implies a 
persistent time series characterized by long 
memory effects, and when 0≤H<0.5, it implies an 
anti-persistent time series that covers less distance 
than a random process.



Self-similarity

Continuous time process is self-
similar, with the self-similarity parameter H 
(Hurst index), if it satisfies the condition:

where the equality is in the sense of finite-
dimensional distributions.
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Self-similar processes and their 
relation to Levy processes



Self-similar processes and their 
relation to Levy processes

Suppose a Levy process X={X(t), t≥0}. Then X is 
self-similar if and only if each X(t) is strictly 
stable. The index α of stability and the exponent 
H of self-similarity satisfy

H/1=α



α-stable distribution
We say that a r.v. X is distributed by the stable law 
and denote

X~Sα(σ,β, μ)
where Sα is the probability density function.

Each stable distribution Sα(σ,β,µ) has the stability 
index α∈(0;2] , which can be treated as the main 
parameter, when we make investment decision, 
β∈[-1,1] is the parameter of asymmetry, σ>0 is 
that of scale, μ∈R is the parameter of position.



Definition of α-stable distribution

A random variable r is said to have a stable distribution 
if for any n > 2, there is a positive number Cn and a real 
number Dn such that
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where r1,r2,…,rn are independent copies of  r. 
If Dn=0 we have strictly stable r.v. 



Special cases of α-stable 
distribution

• The Gaussian distribution, if α=2, β=0 ;
• The Cauchy distribution, if α=1, β=0;
• The Levy distribution, if α=1/2, β=0, 

whose density 

• Degenerate distribution, if α=0, σ=0.
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Stable processes
A stochastic process is strictly 
stable if all its finite dimensional distributions are 
strictly stable.
Theorem. Let  be a stochastic process.  

is strictly stable if and only if all 
linear combinations  

(here d≥1  b1, b2, … ,bd – real) are strictly stable.
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Problems
The Baltic States market is comparatively new 
(series are short 1000 – 2000 data points) and 
passive (number of daily transactions is 
comparatively small).
Daily stock return is a continuous random variable 
with some distribution function (Gaussian, stable 
etc.). But in real market, when stock price does 
not change, its  return is equal to 0. When number 
of such observations increases, then variance 
tends to 0 and the distribution function becomes 
degenerate distribution function.



Daily return problem
(application for the Baltic States equity)

We analyzed all the Baltic Main list and Baltic I-
list in period 2000 – 2006. Number of daily zero 
stock returns for this period differs from 12% to 
89% and in average it is 52% !! Any distribution 
function not fitted to the empirical data 
(Anderson–Darling and Kolmogorov–Smirnov 
goodness–of–fit tests).



Daily return problem
(solution)

So, we removed zero values from series 
(probability P(X=0)=0 in continuous case) and 
analyzed “non–zero” series.
There was found 49 stable series (6 of them were 
Gaussian) in other 16 cases any distribution 
function did not fitted to the empirical data.



Daily return problem
(mixed pdf’s and histogram)
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Daily return problem
(Empirical cdf and mixed cdf’s)

0.08 0.06 0.04 0.02 0 0.02 0.04 0.06 0.08

0.2

0.4

0.6

0.8

Epirical
Stable Mixed
Stable Cotinuous
Gaussian Mixed 

Epirical
Stable Mixed
Stable Cotinuous
Gaussian Mixed 



Stability analysis
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Multifractality and self-similarity
Self-similarity is often investigated through the 

behavior of the absolute moments.
Consider the aggregated series X(m), obtained by 

dividing a given series of length N into blocks 
of length m, and averaging the series over each 
block

Consider 
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Multifractality and self-similarity
If X is self-similar, then AM(m)(q) is proportional to
mb(q), it means that is linear in for 
a fixed q:

In addition, the exponent is linear with 
respect to q. In fact, since 
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Multifractality and self-similarity

we have

is linear on q .

If here is no linearity a process is only multifractal.

)H(q)q( 1−=β



Multifractality and self-similarity
KJK1L

1 1.5 2 2.5 3 3.5 4 4.5 5

30

25

20

15

10

5

q=1
q=1.5
q=2
q=3
q=5

ln(m)

ln
(A

M
(m

))



Multifractality and self-similarity
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Multifractality and self-similarity
LTK1L
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Multifractality and self-similarity
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Multifractality and self-similarity
(results)

full series non–zero series
Self–similar 0+8 12+4

multifractal 42 32
none 15 17



Multifractality and self-similarity
(results, Hurst index)
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Multifractality and self-similarity
(results, full series)
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Multifractality and self-similarity
(results, non-zero series)
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Conclusions
• We analyzed all the Baltic Main list and Baltic I-

list in period 2000 – 2006.
• Any distribution function not fitted to the 

empirical data (Anderson–Darling and 
Kolmogorov–Smirnov goodness–of–fit tests).

• Number of daily zero stock returns for analyzed 
period differs from 12% to 89% and in average is 
52%.

• In “non–zero” series there was found 49 stable 
series (6 of them were Gaussian) in other 16 cases 
any distribution function not fitted to the 
empirical data.



Conclusions
• Analysis of self–similarity in the Baltic States 

market has not been made yet but it is hampered 
by short data series.

• Analysis of self–similarity and multifractality has 
showed that full data series may be analyzed 
only with more complex model. Full series can 
not be adequately described by the stable model,
but stable model better fits for non–zero series.
So mixed model is required to integrate stability 
and the stagnation phenomenon.



Thanks for listening
☺
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