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What is Stock Pinning?

With Stock Pinning we refer to the tendency of stock’s prices to close near

the strike price of heavily traded options as the expiration date nears.

A thorough analysis of the pinning effect has been provided by Ni et al.

(2005).

The authors show that:

• optionable stocks close near the strike prices on expiration dates, both

when the likely delta hedgers have net purchased option positions and

net written option positions. There is no corresponding effect for

non-optionable stocks.

• As the expiration date approaches, the pinning effect increases when

hedgers have net long option positions, but it decreases when delta

hedgers have net short option positions.
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Thus the authors conclude that

• when traders have net long positions delta hedging does contribute to

the pinning.

• On the contrary, when traders have net short positions, the pinning

effects is driven by stock manipulation.
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Hedging Feedback Effects in Illiquid Markets

• Log-normal model

dS(t) = µS(t)dt + σS(t)dW (t)

• B&S ∆ hedging strategies may induce an additional drift term

dS(t) = nL̂S(t)d∆(S, t)) + µdt + σS(t)dW (t).

where L̂ is a constant price elasticity (implying linear impact) and n is

the open interest on the call option.

• The dynamics of ∆(S, t) can be derived by using Itô’s Lemma

d∆(S, t) =
∂∆(S, t)

∂t
dt +

∂∆(S, t)
∂S

dS(t) +
1
2

∂2∆(S, t)
∂S2

dS2
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Avellaneda and Lipkin(2003)

• A-L assume that traders believe markets are perfectly liquid. They do

not take into account feedbacks effects when rebalancing their

portfolio, and assume that the stock price evolves accordingly to the

geometric brownian motion. In this case the Delta is the one given by

B&S. For a a long call this is

∆ = ∂C/∂S = −N(d1).

• AL assume (without justifying it) that only the Delta time decay term

affects the price dynamics:

dS(t) = nL̂
∂∆(t, S(t))

∂t
S(t)dt + σS(t)dW (t)

where they take µ = 0.

Giulia Iori Modeling Stock Pinning 4



AL model generates pinning when traders hedge a long call position. The

intuition behind the pinning in this model is clear.

The drift term ∂∆(t,S(t)
∂t is given by

∂∆(t, S(t))
∂t

= −n(h1)
σ
√

τ

log y − aτ

2τ
,

where τ = T − t, a = r + σ2/2, y = S/K and

h1 =
log y + aτ

σ
√

τ
.

This term is positive for y < expaτ and negative otherways.
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Figure 1: Time decay term as a function of y = S/K for τ = 5 days,

σ = 0.16 and a = 0.

Hedging a short position would have the opposite effect pushing the stock

price away from the strike.
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Frey and Stremme (1997)

The assumption that the time decay term ∂∆
∂t is the leading term in the

dynamics of d∆ is unjustified in A-L.

FS (1997) take all the terms in the delta expansion under consideration and

find

dS(t) = nLb(t, S(t))S(t)dt + v(t, S(t))S(t)dW (t)

with

b(t, S(t)) =
1

1 − nL̂S(t)∂∆(t,S(t)
∂S

(
∂∆(t, S(t))

∂t
+

1
2

∂2∆
∂S2

σ2S2(t)

(1 − nL̂S(t)∂∆(t,S(t))
∂S )2

)
,

and

v(t, S(t)) =
σ

1 − nL̂S(t)∂∆(t,S(t))
∂S

.
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F-S introduced their model to explain the volatility smile. Here we show

that the model also generates pinning.
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Figure 2: Drift term (left) b(t, S) and volatility term (right) v(t, S) in FS

model as a function of y = S/K, τ = 5 days and nL̂ = 2.5(solid), nL̂ =
0.5(dot), nL̂ = 0.1(dash).
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Figure 3: Drift term (left) b(t, S) and volatility term (right) v(t, S) in FS

model as a function of y. The price elasticity is nL̂ = 0.05. The three lines

correspond to three different maturity: 1 day before maturity(solid), 3 days

before maturity(dash), 4 days before maturity(dot).
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We solve the A-L and F-S models numerically. Given eq.(5), the probability

density function p(t, y) of being at y at time t satisfies the forward

Kolmogorov equation:

∂p(t, y)
∂t

=
1
2

∂2p(t, y)
∂y2

v(t, y)2 − ∂p(t, y)
∂y

b(t, y)

with initial condition the delta function δ(τ0, y0) = 1. Equation 6 can be

solved using an implicit scheme with an adjusting mesh as we approach

maturity due to the singularity at y = 1 and τ = 0.
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Ni et al. estimate that pinning affects 2% of optionable stocks. Our choices

of parameters give comparable values with the empirical result.
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Figure 4: Solution of the Kolmogorov forward equation with initial condi-

tion y0 = 1.04, 5 days before maturity for three different hedging positions.

(Left) Avellaneda model with nL = 0 (solid), nL = 0.0005 (small dash),

nL = 0.002 (large dash). (Right) Frey and Stremme model nL = 0 (solid),

nL = 0.002 (small dash), nL = 0.003 (large dash).

Giulia Iori Modeling Stock Pinning 11



Microstructure Model

The main assumptions behind the Frey and Stremme model (as well as of
the Avellaneda and Lipkin model) is that the prices are lognormal,
rebalancing continuous, the price impact is linear via a constant price
elesticity L, and arbitrarily large option positions can always be rehedged
(demand and supply always match).

Empirical studies on the NYSE (see for example Lillo et al. (2003)) have
shown nonetheless that the price impact function is usually concave,
typically well approximated by a function dp(ω) ∼ ωα where dp is the
price change caused by an oreder of volume ω. The exponent α varies from
α ∼ 0.5 to α ∼ 0.2 depending on stock capitalization.

Furthermore the feedback mechanism in place in these models extrapolates
from actual markets condition like the order flow arrival rate and the order
book shape.
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We introduce here a microstructure limit order model, previously

introduced in Daniel et al. (2003), where a hedger rebalances his position at

discrete times.

The model assumes a simple random order placement of orders. All the

order flows are modeled as Poisson processes.

Bids and offers are placed with uniform probability at integer multiples of

the tick size ∆p on a window sufficiently large around the midpoint.
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We assume that

• market orders arrive at a rate of ν shares per unit time, with an equal

probability for buy and sell orders.

• limit orders arrive at a rate of α shares per unit price and per unit time.

• limit orders can also be removed spontaneously by being canceled or

by expiring: constant rate of δ per unit time.

• The size of the limit and market orders are sampled from a log normal

distribution with mean and variance one.

Giulia Iori Modeling Stock Pinning 14



Giulia Iori Modeling Stock Pinning 15



In Daniel et al. (2003) it is shown that two parameters characterize the

shape of the book:

• the asymptotic depth α/δ which gives the number of shares per price

interval far from the midpoint;

• the parameter ε = 2δ/ν which determines the depth at the bid and at

the ask. ε also determines the price impact function which is linear for

ε > 0.1 and concave for smaller values of ε.

We calibrate the model by assuming that market orders arrive with a

frequency of about two a minutes. Hence, we choose ν = 0.16 and

δt = 0.08 minutes. For the price tick we choose ∆p = 0.02. The other

parameters were initially set to α = 0.31, δ = 0.08, which gives a value of

ε = 1.
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We add one hedger to the model and study if pinning arise.
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Figure 5: Drift and volatility under microstructure model for 2 differents ε:

ε = 0.025 (dash), ε = 1. (solid) for n = 300
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Figure 6: drift and volatility under microstructure model for ε = 1 for 3

differents n: n = 300 (small dot), n = 600 (large dot), n = 1000 (solid)

Giulia Iori Modeling Stock Pinning 18



0.98 1 1.02 1.04 1.06 1.08 1.1
y

0

0.02

0.04

0.06

0.08

0.1

P
�y�

0.98 1 1.02 1.04 1.06 1.08 1.1
y

0

0.02

0.04

0.06

0.08

P
�y�

Figure 7: Stock price distribution without the hedger(solid) and with the

hedger n = 500 (dash) and n = 1000 (dot) for 2 different ε: ε = 0.025
(left), ε = 1. (right)
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Conclusion

The main results of this paper are

• We show that the AL model is a simplified form of a previous model
introduced by FS

• We study pinning in the FS model, discuss the mechanism that lad to
pinning and show that the pinning probabilities are compatible with
empirical findings

• We study pinning on a microstructure model which suggest that the
volatility increases close to the strike instead of decreasing. This would
also imply that the smile would not result from option hedging
strategies. More empirical studies are also necessary to clarify the
effect of hedging on market volatility, which could also have a role on
explaining the volatility smile.

Giulia Iori Modeling Stock Pinning 20



The model also show that pinning is stronger when ε ∼ 1, i.e. when the

price impact is almost linear, thus possibly validating the assumptions of the

theoretical models.
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