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1. Introduction

1.1. Nucleotide sequences

4 nucleotides: A,C,G,T
Nucleotide sequence ...GCAATACGCCTA...

Coding and non-coding regions.
Gene is a protein coding nucleotide sequence,
and DNA sequences located between genes
are non-coding genome sequences.

Evolution: mutation, insertion, deletion.

Properties of nucleotide sequences:
Bacterial genomes: total ∼ (0.5− 10) · 106

nucleotides, genes ∼ 102 − 103.
Human genome: total 3.12 · 107 nucleoti-
des, genes ∼ 30000,
non-coding part ≈ 97%.

Correlations: long-range dependence in nuc-
leotide sequences indicates a complexity of
a system; Li et al. (1992), Peng et al.
(1992), Buldyrev et al. (1995), Karlin et
al. (1993).
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1.2. Problems

• Practical: prediction and identification

of biological function(s) of genes or groups

of genes, identification of functionally related

genes (regions),

(re)construction of phylogenetic trees...

• Decoding: Searching for informative and

biologically important regions, extraction of

genetic information (mining)

• Coding: Modeling and generation of nuc-

leotide sequences,

simulation of DNA evolution

• We are interested in a opposite problem:

what are noninformative nucleotide sequen-

ces?
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2. Models

2.1. Notation

Let X(t), t ∈ T , be a (discrete time) finite
homogeneous Markov chain,

X(t) = {xl(t) ∈ A, l = 1, . . . , n, t ∈ T},

Here T = {0,1, . . .}, A is a finite set;
for DNA sequence A = {A, C, G, T}.

Two directions of evolution:

Evolution in time

X(t) −→ X(t + 1)

In the stationary case distribution of X(t) is
independent of t.

Thus, it defines probability distribution of a
random sequence X on the set of sequences
An and we can consider its

”Evolution in space”

xl −→ xl+1
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2.2. Independent evolution

The first stochastic models of DNA evolu-

tion assumed that the nucleotide along the

DNA sequence evolved independently of one

another according to the same rule.

Jukes and Cantor (1969), Kimura (1980),

HKY model (Hasegawa et al. (1985))

Consequently, X is a sequence of i.i.d. va-

riables i.e. independent and identically dist-

ributed nucleotides.

It is not realistic: results of some statistical

analysis are presented below.

A natural generalization: models with inde-

pendent codons (for coding sequences).

Muse and Gaut (1994), Goldman and Yang

(1994), Pedersen et al. (1998), Schat and

Lange (2002).
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2.3. Context-dependent evolution

In context-dependent evolution model it is

assumed that mutations in each site (nucleo-

tide or codon) depend on its nearest neigh-

bours. Usually continuous time Markov chains

are considered.

Time reversibility implies the Markov proper-

ty. Arndt et al. (2003)

The Markov property in space of the evolu-

tion is supposed. Hwang and Green (2004)

consider a general nonreversible context-dependent

nucleotide model, Siepel and Haussler (2004),

Christensen at al. (2004) context depen-

dent codon model.

Jensen and Petersen (2000,2001) and Jen-

sen (2005) a discussion of the relation be-

tween time reversibility and the Markov pro-

perty of the stationary measure of context-

dependent evolution is given.
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3. Noninformative nucleotide sequences

Problem:

• What does it mean ”noninformative nucleotide
sequences”?
How to define ”genetic noise”, i.e. sequence which
has no genetically important information?

Direct application:

• Informativeness of a segment in DNA is measured
as its distance to noninformative one usually obtained
as a random permutation of the initial segment.

Assumptions:

1. Non-coding regions of DNA has not direct impact
on survival of biological species and thus is not (so)
genetically important.

2. Evolution of non-coding regions has simple struc-
ture and are controlled by local factors.
For instance, here we ignore insertions and deletions
and assume that probability of mutation in any site
depends exclusively on its nearest neighbours.

3. The stationary distribution of non-coding sequen-
ce evolution can be treated as ”noninformative”, i.e.
as ”genetic noise”.
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Definition:

Let the evolution X(t), t ∈ T, of nucleotide sequences
x ∈ An in time be a (discrete time) homogeneous Mar-
kov chain with a given transition probabilities Π of a
simple structure. If there exists its stationary distri-
bution p on An, a random sequence X with the distri-
bution p is called noninformative or genetic noise.

Assume for simplicity that the site state set A = {0,1}
and consider the Glauber dynamics in time of a ran-
dom sequence

{X(t), t ∈ T} (X(t) ∈ An)

of the length n . Suppose that this dynamics is Markov
and homogeneous in both time and space but in each
site depends on its nearest neighbours.

Namely,
1. a nucleotide from sequence is selected with proba-
bility 1/n;
2. the selected nucleotide mutates with probability

πuzv := P{xl(t + 1) = z̄|x[l−1,l+1](t) = uzv} (1)

l = 2, . . . , n− 1, u, z, v ∈ A, t ∈ T.

Here z̄ = 1− z,

x[l−1,l+1] = xl−1|xl|xl+1

(we omit the argument t).
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Let X denote the ”noise” obtained by this evolution,
i.e. X is a random sequence of 0’s and 1’s with the
stationary (invariant) distribution of {X(t), t ∈ T}. It
is completely determined by 8 scalar parameters π :=
{πuzv}.

• What can we say about the properties of the ge-
netic noise X ?

Proposition 1. If X is homogeneous Markov chain
(in space) of order k < n/4 then
(a) k = 1, X is reversible and depends on 2 parame-
ters,
(b) the probabilities π are symmetric, πuzv = πvzu and
only the ratios πu0v/πu1v are identifiable.

Proposition 2. There exists π such that X is not a
nonhomogeneous Markov chain (of order 1).

The PROOF’s are rather straightforward and are ba-
sed on
Hamersley-Clifford theorem for finite random fields.
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4. Computer simulations

Let A = {0,1}. The sequence

X(t) = {xl(t), l = 1, . . . , n}, t ∈ T,

evolves under the context-dependent muta-

tion model. Probability of nucleotide muta-

tion in the sequence depends on two neigh-

bouring nucleotides (the same Glauber dyna-

mic model).

Several different sets of transition probabili-

ties are considered,

for example:

symmetric where πuzv ≡ πvzu,

non-symmetric where πuzv 6≡ πvzu.

Simulation of the sequence evolution starts

from a random binary sequence and 107 ite-

rations (mutations) are performed. It is as-

sumed that sequence obtained has (approxi-

mately) stationary distribution.
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Autocorrelation function

Definition.

Let X(t) be a stationary process and there

exists a real number H ∈ (1
2,1) and a cons-

tant cp > 0 such that autocorrelation func-

tion

ρ(k) ∼ cp|k|2H−2, k →∞.

Then X(t) is called a stationary process with

long-range dependence.

The exponent H is called Hurst parameter.

For H = 1/2 the observations are uncorrela-

ted (cp = 0), and for H ∈ (0, 1
2) the process

has short-range dependence.

Long memory is characterized by a slow de-

cay of the correlations proportional to k2H−2.

A plot of the sequence autocorrelation func-

tion should therefore exhibit this decay.
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Autocorrelation function of simulated binary

nucleotide sequence of length n = 200,

non-symmetric transition probabilities.
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Estimating of parameter H, R/S analysis

Binary nucleotide sequence xl, l = 1, . . . , n is

subdivided into m non-overlapping blocks.

We compute the rescaled adjusted range

R(ti, d)/S(ti, d) for a number of values d whe-

re ti are the starting points of the blocks.

R(ti, d) = max{0, W (ti,1), . . . , W (ti, d)}−

min{0, W (ti,1), . . . , W (ti, d)},

where

W (ti, k) =
k∑

j=1

xti+j−1 −
k

d

d∑
j=1

xti+j−1,

k = 1, . . . , d.

S2(ti, d) is a sample variance of xti, . . . , xti+d−1.

For each values of m and d we obtain a num-

ber of R/S samples and plot log(R/S) vs.

log d.
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A least squares line is fitted to the points of

the R/S plot. The slope of the regression

line for these R/S samples is an estimate for

the Hurst parameter H.

R/S plot for simulated binary nucleotide sequen-

ce of length n = 200,

non-symmetric transition probabilities.

The Hurst parameter estimate Ĥ = 0.785
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Real non-coding sequence

Below we present autocorrelation function and
R/S plots of bacteria Escherichia coli non-
coding sequence of length n ≈ 200.
Nucleotide recoding rule:

{C, G} → {1}, {A, T} → {0}.
Relative frequency of nucleotides C+G is 50.79%.
Note, that in the generated sequences P(0) =
P(1) = 1/2.
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The Hurst parameter estimate for this sequen-

ce Ĥ = 0.782
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5. Statistical analysis:

Data: bacterial genomes (GenBank)

We use full genome sequences and sets of their non-
coding regions. The data we deal with is of the follo-
wing form:

{(yl, zl), l = 1, . . . , N},
where

yt = x2l, zl = (x2l−1, x2l+1), l = 1, . . . , N.

Assumption:

{yl, l = 1, . . . , N} are conditionally independent given
{zl, l = 1, . . . , N}, and impact of z’s on y’s is homo-
geneous (does not depend on sites l).

This assumption is valid, in particular, if X is a homo-
geneous Markov chain.

• Thus, standard assumptions of regression models
hold and we can apply standard statistical software to
perform statistical analysis.

We use SAS (proc CATMOD) to fit loglinear model
to the data.
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Let the state space be A = {A, C, G, T}.

Saturated logit model with the reference state ’T’:

log
( P{x[2l−1,2l−1] = uzv}
P{(x[2l−1,2l−1] = u′T ′v}

)
= λz + λL

uz + λR
zv + λL&R

uzv ,

u, z, v ∈ A, u, z, v 6=′ T ′.

For the Markov chains the interaction term λL&R

should be zero.

Markov hypothesis

H0 : λL&R ≡ 0

The reversibility to hold the logit model should be
symmetric in u and v.

Reversibility hypothesis

H0 : λL
uz ≡ λR

zu

We introduced a special variable ’as’ to indicate the
asymmetry. For the symmetric models both the main
effect of ’as’ and all its interactions should be zero.

We tested this for the full genome of bacteria Esche-
richia coli and for its set of non-coding regions.
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Testing the Markov hypothesis

H0 : λL&R ≡ 0

Likelihood Ratio (LR) statistic for full genome:

DF = 27, LR = 18411.49, p-value < .00017

Distribution of p-values of LR statistic for testing
the Markov hypothesis for the set of the non-coding
regions of the genome.

p-values of LR statistic
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Testing the reversibility for the full genome

H0 : λL
uz ≡ λR

zu

We introduced a special variable ’as’ to indicate the
asymmetry. For the symmetric models both the main
effect of ’as’ and all its interactions should be zero.

Testing the reversibility:
distribution of p-values for the non-coding regions

Testing for interactions of ’as’
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