Ising model on two connected Barabasi-Albert networks

Krzysztof Suchecki
Janusz A. Hołyst

Introduction

- Social interactions - often majority-driven

Introduction

- Social interaction networks are often modular

Introduction

- We represent simplest social interactions with Ising model on network

Introduction

- And then study coupling of two networks (one larger modular network)

A

B

Regular networks

Hamiltonian for the Ising model, assuming the interaction constant is same for all pairs of spins.

$$
H=-J \sum_{i, j} s_{i} s_{j}
$$

Equation for mean spin (magnetization) in the mean-field approximation:

$$
\left\langle s_{i}\right\rangle=\tanh \left(\beta \sum_{j} J_{i j} s_{j}\right)=\tanh \left(\beta J k\left\langle s_{i}\right\rangle\right)
$$

k - coordination number (number of neighbors)

Scale-free networks

$$
\left\langle s_{i}\right\rangle=\tanh \left(\beta \sum_{j} J_{i j} s_{j}\right)=\tanh \left(\beta J \sum_{j} \varepsilon_{i j}\left\langle s_{j}\right\rangle\right)
$$

Instead of coincidence matrix $\varepsilon_{\mathrm{ij}}$ we take the statistical probability of the spins being neighbors:

$$
\left\langle\varepsilon_{i j}\right\rangle=\frac{k_{i} k_{j}}{E}=\frac{k_{i} k_{j}}{\langle k\rangle N}
$$

We obtain following

$$
\left\langle s_{i}\right\rangle=\tanh \left(\frac{\beta J k_{i}}{\langle k\rangle N} \sum_{j} k_{j}\left\langle s_{j}\right\rangle\right)
$$

Scale-free networks

$$
\left\langle s_{i}\right\rangle=\tanh \left(\frac{\beta J k_{i}}{\langle k\rangle N} \sum_{j} k_{j}\left\langle s_{j}\right\rangle\right)
$$

Now we define average weighted spin S as:

$$
S=\frac{1}{\langle k\rangle N} \sum_{i} k_{i}\left\langle S_{i}\right\rangle
$$

so we can write above as

$$
S=\frac{1}{\langle k\rangle N} \sum_{i} k_{i} \tanh \left(\beta J k_{i} S\right)
$$

Scale-free networks

What does the weighted spin mean, and why weighted?

$\mathrm{k}_{1}=6 \quad \mathrm{k}_{2}=2$
$\mathrm{s}_{1}+\mathrm{s}_{2}=0 \quad$ no order?
$\mathrm{s}_{1} \mathrm{k}_{1}+\mathrm{s}_{2} \mathrm{k}_{2}<0$ order!

Scale-free networks

$$
S=\frac{1}{(k) N} \sum_{i} k_{i} \tanh \left(\beta J k_{i} S\right)
$$

Linear approximation

$$
S=\frac{1}{\langle k\rangle N} \sum_{i} k_{i}^{2} \beta J S=\beta J \frac{\sum_{i} k_{i}^{2}}{\langle k\rangle N} S=\beta J \frac{\left\langle k^{2}\right\rangle}{\langle k\rangle} S
$$

B-A network

$$
\beta J \frac{\left\langle k^{2}\right\rangle}{\langle k\rangle} S=\beta J \frac{m}{2} \ln N S \quad \longrightarrow \quad T_{c}=J \frac{m}{2} \ln N
$$

Effective Tc versus $\mathrm{m}+\mathrm{N}$ for m

 $=5$ and various N , averaged over up to 1000 samples.
PHYSICA

Physica A 310 (2002) 260-266
www.elsevier.com/locate/physa

Ferromagnetic phase transition in Barabási-Albert networks

Agata Aleksiejuk ${ }^{\text {a }}{ }^{*}$, Janusz A. Hołyst ${ }^{\text {a }}$, Dietrich Stauffer ${ }^{\text {b }}$

${ }^{a}$ Faculty of Physics. Warsaw Universitv of Technoloav. Koszvkowa 75. PL-00-662 Warsaw. Poland

Coupled networks

Coupled networks

Using linear approximation we investigate existence of nonzero solutions, that correspond to an ordered phase.

$$
\begin{aligned}
& \left\langle s_{A i}\right\rangle=\beta J_{A A} k_{A A i} \sum_{j} \frac{k_{A j}\left\langle s_{A j}\right\rangle}{E_{A A}}+\beta J_{B A} k_{A B i} \sum_{j} \frac{k_{B A j}\left\langle s_{B i}\right\rangle}{E_{B A}} \\
& \left\langle s_{B i}\right\rangle=\beta J_{B B} k_{B B i} \sum_{j} \frac{k_{B j}\left(s_{B j}\right\rangle}{E_{B B}}+\beta J_{A B} k_{B A i} \sum_{j} \frac{k_{A B j}\left\langle s_{A j}\right\rangle}{E_{A B}}
\end{aligned}
$$

Similar to single scale-free network we introduce weighted spins $\mathrm{S}_{\mathrm{A}}, \mathrm{S}_{\mathrm{B}}$. Unfortunately we also need S_{AB} and S_{BA}.

Coupled networks

A
B
$S_{A}-$ spin of network A weighted by $k_{A A}(\bullet)$
$S_{B A}$ - spin of network B weighted by $k_{B A}(0)$

Coupled networks

Coupled networks

If we assume that the number of inter-network connections is proportional to the intra-network degree:

$$
k_{A B}=p_{A} k_{A A}, \quad k_{B A}=p_{B} k_{B B}
$$

then we don not have to consider S_{AB} and S_{BA} anymore since they are proportional to S_{A} and S_{B}.

$$
\left[\begin{array}{ll}
\Lambda_{A A} & \Lambda_{B A} \\
\Lambda_{A B} & \Lambda_{B B}
\end{array}\right]\binom{S_{A}}{S_{B}}=\lambda\binom{S_{A}}{S_{B}}
$$

Coupled networks

We have following eigenvalues λ of the matrix Λ :

$$
\lambda_{ \pm}=\frac{\Lambda_{A A}+\Lambda_{B B} \pm \sqrt{\left(\Lambda_{A A}-\Lambda_{B B}\right)^{2}+4 \Lambda_{B A} \Lambda_{A B}}}{2}
$$

λ : eigenvector $\binom{1}{-c_{1}}$ λ_{+}: eigenvector $\binom{1}{c_{2}}$

The netwoks are ordered antiparalelly. T_{C} is lower than for separate networks.

Increasing inter-network connection strengths causes T_{C} to decrease, down to 0 , when the inter-network connections are as dense as intra-network.

Numeric results

We have performed numeric simulations to find the critical temperatures $\mathrm{T}_{\mathrm{c}+}$ and $\mathrm{T}_{\mathrm{c}-}$.

To find the eritical temperature $\mathrm{T}_{\mathrm{c}+}$ we calculate numerically the susceptibility $\chi=\mathrm{S}_{\mathrm{h}}-\mathrm{S}_{0}$. Due to very highly fluctuating nature we make 30 -point running average and fit parabolic curve.

Numeric results

We have performed numeric simulations to find the critical temperatures $\mathrm{T}_{\mathrm{c}+}$ and $\mathrm{T}_{\mathrm{c}-}$.

Plot the total spin starting from antiparallel ordered state as a function of temperature.

Numerical results

Numerical simulations for two same B-A ($\mathrm{N}=5000,<\mathrm{k}>=10$, $\mathrm{D}=0$) and various number of inter-network connections:
 $\mathrm{T}_{\mathrm{c}+}$, parallel
ordering, $\mathrm{T}_{\mathrm{c}+}=\mathrm{A}+\mathrm{C}$

Symbols - numeric results

Lines - analytic formulas
$\mathrm{T}_{\mathrm{c}-}$ antiparallel ordering, $\mathrm{T}_{\mathrm{c}}=\mathrm{A}-\mathrm{C}$
Inter-network link number

Questions

-What other dynamics can be investigated on connected networks and can they be described in the same way?
-What other network topologies are worth investigating?

Ref.: K. Suchecki, J.A. Holyst cond-mat/0603693

