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Introduction

* Social interactions — often majority-driven
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Introduction

e Social interaction networks are often modular



Introduction

* We represent simplest social interactions
with Ising model on network
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Introduction

* And then study coupling of two networks
(one larger modular network)




Regular networks

Hamiltonian for the Ising model, assuming the interaction
constant 1s same for all pairs of spins.

H=-J)ss,
i

Equation for mean spin (magnetization) in the mean-field
approximation:

<Si> = tanh ,sz: JiiS; |= tanh(,b’Jk<Si >)

k - coordination number (number of neighbors)



Scale-free networks
()= tanh[ﬂzj:Jiij] E tanh[ﬂJ Zj:gij<sj>]

Instead of'coincidence matrix g; weitake the statistical
probability of the spins being neighbors:

KR KK,

@) E (k)N

We obtain following

(s,) = tanh[ <€J>kN ij<sj>j

J




Scale-free networks

T

Now we define average weighted spin S as:
=5 |
S =Tn D ki(si)
i

SO we can write above as

S = 2k tanh ( 5k S )



Scale-free networks

What does the weighted spin mean, and why
weighted. ?

v
Si S
local field created by the spin s,

k=6 k,=2

s;+s,=0  no order ?

s,k +s;k,<0" order |



Scale-free networks
S I tanh( kS )

Linear approximation 5
1 2 Z ki <k2>
S :Wzki BIS = I IO S = £

B-A network

k2
,BJ< >S:,BJ%1nNS — T,=J2InN

(k)
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Effective temperature, m=5, =500, as a function of the number of nodes in the natwork
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Effective Tc versus m+ N for m
=5 and various N, averaged
over up to 1000 samples.
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Coupled networks

Kgg=3
kga=1
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Coupled networks

Using linear approximation we investigate existence of
nonzero solutions, that correspond to an ordered phase.
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< > /B'JAAkAAIZ E.. IB‘]BAkABlZ El
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Similar to single scale-free network we introduce Welghted SpINS
S A, Sg.Unfortunately we also need S, and Sg



Coupled networks

o

A B

S 1 - spin of network A weighted by k, 4 (@)

Sga - Spin of network B weighted by kg, (@)



Coupled networks

The state of the system can be written as vector:




Coupled networks

If we assume that the number of inter-network connections 1s
proportional to the intra-network degree:

kAB pAkAA9 kBA kaBB

then we don not have to consider S, and S;, anymore
since they are proportional to S, and Sg.

AAA ABA SA SA

_AAB ABB_ SB SB




Coupled networks

We have following eigenvalues A of the matrix A:

PIe.2 App+ Agg i\/(AAA —Apgg )2 + AN g A g

e

2
: 1 : 1
A_: eigenvector (_Cj A, : eigenvector (C j
The netwoks are ordered The networks are ordered
antiparalelly. T 1s lower than paralelly. T 1s higher than for
for separate networks. separate networks.
Increasing inter-network Networks stabilize each other,
connection strengths causes T - similar to way the network
to decrease, down to 0, when the stabilizes itself.

inter-network connections are as
dense as intra-network.



Numeric results

We have performed numeric simulations to find the critical
temperatures T_, and T_.
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To find the critical temperature T, we calculate numerically the
susceptibility x=S,-S,. Due to very highly fluctuating nature we
make 30-point running average and fit parabolic curve.



Numeric results

We have performed numeric simulations to find the critical
temperatures T_, and T_.
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Plot the total spin starting from antiparallel ordered state as a
function of temperature.



Numerical results

Numerical simulations for two same B-A (N=5000, <k>=10,
D=0) and various number of inter-network connections:
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Questions

*What other dynamics can be investigated on
connected networks and can they be described
in the same way ?

*What other network topologies are worth

investigating ?
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