

#### Physics of Risk 13-16 May 2006 Vilnius

# Disaster spreading in complex networks

Karsten Peters, Lubos Buzna, Dirk Helbing

Institute for Economics and Traffic Faculty of Traffic Sciences "Friedrich List" TU Dresden



#### Identification of interaction networks





#### Disaster dynamics: What are we interested in.





## UNIVERSITAT Modeling and simulation of disaster spreading



Buzna L., Peters K., Helbing D., Modelling the Dynamics of Disaster Spreading in Networks, Physica A, 2006

#### Spreading of disasters:

- Causal dependencies (directed)
- Initial event (internal, external)
- Redistribution of loads
- Delays in propagation
- Capacities of nodes (robustness)
- Cascade of failures

## Simulation of topology dependent spreading:

- What are the influences of different network topologies and system parameters?
- Optimal recovery strategies?



#### Node dynamics:

#### Threshold function:



We use a directed network, dynamical, bistable node models and delayed interactions along links.



Node robustness vs. failure propagation:



We found a critical threshold for the spreading of disasters in networks. Topology and parameters are crucial.





We found a topology dependent "velocity" of failure propagation. Spreading in scale-free networks is slow.



Coinciding, distributed, random failures.



Connectivity is an important factor (in a certain region).



1. Mobilization of external resources:

 $r(t) = a_1 t^{b_1} e^{-c_1 t}$ 

- 2. Formulation of recovery strategies
- Network topology
- Level of damage

#### 3. Application of resources

in nodes  

$$\frac{1}{\tau_i(t)} = \frac{1}{(\tau_{start} - \beta_2)e^{-\alpha_2 R_i(t)} + \beta_2}$$

Parameters

#### Network topology

 $t_D$  time delay in response R disposition of resources



- $R_i(t)$  cumulative number of resources deployed at node *i*
- $au_{start}$  initial intensity of recovery

process

 $lpha_2$   $eta_2$  - fit parameters



Given: amount of resources, mobilized with certain delay.



Worst – case scenario

Recovery (in reasonable time) is not always possible.

K. Peters, TU Dresden 2006



## Application of resources on a scale-free network









Average behaviour of strategies

- Strategies based on the network structure are important for scale-free structures.
- Strategies based on damage information are more appropriate for regular networks.
- The optimal strategy is time dependent! (short t<sub>D</sub>=> damage) (large t<sub>D</sub> => network structure)



- We proposed a generic model for the spreading of failures in dynamic networked systems.
- The model facilitates an assessment of the stability and robustness of interaction networks and infrastructures.
- It assists the evaluation of disaster response management strategies.

#### **Topology aspects:**

- Pase transition in dynamic behaviour
- Different spreading conditions
- Robustness under distributed random failures

#### There is no unique robust and reliable architecture ! e.g.: redundancy, hubs, feedback loops

**Recovery aspects:** 

Minimum of resources to stop an evolving disaster

Effectivness of damage oriented or connectivity

Optimization of disaster response

dependent response strategies

There is no unique optimal response startegy! e.g.: delay, available forces, topology



### Thank you for your attention.

#### Contact:

#### **Karsten Peters**

Institute for Transport & Economics Andreas-Schubert-Straße 23, D-01062 Dresden, Germany

Phone: (+49/0) 351 463-36878 Fax: (+49/0) 351 463-36809 E-Mail: peters@vwi.tu-dresden.de

#### www.helbing.org









 D. Helbing, H. Ammoser, C. Kühnert: Disasters as extreme events and the importance of networks for disaster response management ,Springer (Berlin 2006) (in print)
 K. Peters, TU Dresden 2006
 Dynamics of disaster spreading



#### Importance of hubs in networks?

- Inhomogeneities can have considerable damping effects on spreading failures
- Hubs reduce the robustness against (small) disturbances and attacks.
- Scale-free networks are among the safest structures in case of large and distributed failures.



