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| will model a society composed of multitude of elements (trLe agents).

A multitude of
“natural agents’ in a
society.

In my simulations
the adaptive
intelligent agents

are symbolized by

non-linear single
layer perceptrons
which has to learn to
solve some pattern
recognition task.

Learning (adaptation)
processes of the
agents differ in
stimulation,
emotions, value
systems, etc.
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The elements of the society are functioning in
changing environments.

Thus, the elements have to be adaptive and ought
to adapt to sudden environmental changes and survive.

In reality, the elements of the society are complex ones.
We model a large number of the agents during

a long sequence of changes.

Therefore, | am obliged to use very simple elements.
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My to-say’s presentation will be a little bit philosophic.
(I graduated TU, worked in Pattern Recognition, Multivariate Statistical Analysis,

To-day | will speak about:

Artificial Neural Networks).

1) My point of view on risk: there are at least two sorts of
risks: a risk of individual and a risk of the population.

adaptive

3) | will analyze standard gradient descent training
algorithm where difference between target values in

classification problem could be interpreted as
stimulation strength and pattern recognition tasks are
changing in time (they mimic environmental changes).

4) 1 will present arguments that for survival of the
population, higher risk of individuals is beneficial.
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Thus, | am obliged to use very simple adaptive elements.

ADAPTATION
Genetic (inheritance) Learned by iterative procedure
Darwin, Baldwin, etc. Pavlov, Thorndike, etc.

nonlinear single layer perceptron (SLP)

trained by gradient descent algorithm

Examples of AIA could be:

1) a cell (for example a lymphocyte, neural cell — neuron, etc),

2) an individual (including a robot or intelligent computer program)
3) a group of people (small or larger enterprise)

4) an economic alliance, political group, 5) a state.
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Classical approach in adaptive learning is rooted in
psychology. Here learning takes place through a process of
punishment and reward with the goal of achieving a highly
skilled behavior.
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We Wl” model the |nte”|gent e A
agents by means of non-linear ---f.eeee. Zi/—( Sti \Lmulatlon
single layer perceptron (SLP) Bore weighted sum Target 2
trained by back propagation i
algorithm.
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Non-linearity is a key element in analysis of aging,
adaptation to changes ...
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Small derivative ~ _

Standard ~ < =~ -~ .(,L i'(m'g) output
non-linear SLP. ~~

Its cost function o ~weighted sum
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where wx(®+w, is a weighted sum, sum (arg), and f(arg) is

non-linear soft limiting activation function. Iterative gradient descent
training Wiy =W, T CT. (2)
where 7' = -1 » (!i” - fsum)=< (Of (sum) / Csum) = (Csum [ cw) 18 the correction term,

. . i) . . e
n is called learning step parameter, f{. - flsum) 1s an error signal — a difference
between the desired and actual outputs of the perceptron. sum = w’ x'"" + w_
Cf (sum)/ csum 18 the derivative ol the activation function and (p+1)-dimensional

vector (&f (sum)/ csum) x (Csum /[ ow) 18 called a gradient.

When weights are large, sum is large too. Then derivative of the
activation function (the gradient too) is small. Learning is slow!!!
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Changes of the faskz ¢4 Yo-flag  oupu
pattern B
recognition M B

tasks

Tru‘g weighted sum
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If the perceptron was trained to solve Task 1 for a long time, its weights
became large (if classification error rate is small and targets are 0 and
1 for standard sigmoid activation function). Then it is difficult to learn
Task 2 rapidly (gradient is small). The agent

is old.
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When the weighs are large, learning is slow!!!

A chaos theory says that the same laws are valid in micro and
macro scales. Moreover, it seems that many of the laws are
working both in physics and in information sciences. For
example, aging Is common for human
beings and

computer codes.

= C
\)\\

We are trying to explain ageing of human beings and computer codes by
the same approach (model), Int .J. Modern Physics, Ser C. (Raudys, 2002)

How to affect aging? In means, how to slow down the weights growth?
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How to affect training speed? How to slow
down the weights growth?

1. Change of stimulation # of iterations[

Yerkes-Dodson Law.

2. Adding a noise. We can interpret this
as criminality, catastrophes, etc. And

risk too.

250

200

0.3

stimulation
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Changeabillity Is inherent feature of the Universe. | analyze
populations with offspring acting in changing
environments.

ﬁ-""

The agents are aimed to function in varying environments, adapt to the
unexpected alterations, to comply the fitness function and survive.
Failure to comply the survivability condition results in the agent being
removed from the “society” and be replaced by a "newborn". The
offspring inherits the level of the noise and a length of training
seqguence, etc.

The population of agents is split into many groups with moderate
cooperation between the agents inside the group and very limited
cooperation between the groups. To increase ability of agents to adapt
to environmental changes more rapidly we suggest storing their gains
accumulated during a period of last environmental changes, adding a
noise to training signals and level of “survival threshold”. 11
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A
strength
of the
task
changes

In present
research we
found that
synthetic
emotions
are useful
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Large changes
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Dynamics of strengths of
the changes

Dynamics of noise injection intensity. An
interpretation of the noise injection is arbitrary.

*e Crlmlnallty in central and eastern Europe? Various
val-ue systems? Could the noise injection intensity

be mfer.preted as the RISK level?

Up to 40 % of training
directives are corrupted
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The
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the
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must be
different !

pattern classification
tasks.
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Functional Maodel of Criminality: Simulation Study
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Fig. & Simulation resall of infregees enviconmenial changes with gy e=250 epochs
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Double feedback chain — chaotic behavior.
It challenges new investigations. 15
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Now we will consider how to reduce risk in changing
environments.

ought not to be used for training. The agent, however,
do not know about the task change. So, it uses the old
and new data.

300 agents (SLP) are solving the same Pattern

Recognition tasks. They differ in the length of
training sequence and noise intensity. These 2

parameters are inherited from successful agents.

16



BLUE - single agent.
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RED — MAS composed of 300 agents. The 10
best agents are voting in subsequent time moment.

4 Classification error rate
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BLUE - single agent. RED — MAS composed of 300 agents. The 10
best agents are voting in subsequent time moment. Details.

Classification error rate
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The Multi-Agent System
for Prediction of Financial Time Series
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Concluding Remarks

ltake for granted

Everything is changing permanently. Changeability is a
normal behavior. Intelligent agents have
to new conditions permanently. 3

To obtain general conclusions we need to analyze

as simple models of adaptive agents as possible. To explaln
some primary trends like origin of emotions, aging, grouping
of agents into clusters it is worth also to analyze

populations of adaptive agents which are solving common
goal - survival in permanently changing environments. The
population of SLP with inheritance is simple, however,
useful model to understand many of real world phenomena.

. . Q
The simulations gave arguments that for d‘:‘”
survival of the population, higher level of risk LS
of individuals could become beneficial. 20
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Concluding Remarks

The simulations gave arguments that
for survival of the populations,
higher level of risk of individuals
could become beneficial.

We do not need to protect
our children from difficulties too much,
from incorrect behavior with them.

Q

A>We do not need stimulate

our children too much (small gifts, mild
punishments, etc.)

It is a reason why in the Bible it is written:
Thank to Good for misfortunes He has sent to you.

It makes the nation more strong and allows us to
overcome future catastrophes more easily. Etc.
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