About the Risk to Stick

 in a Traffic JamR. Mahnke ${ }^{1}$

reinhard.mahnke@uni-rostock.de
${ }^{1}$ Rostock University, Institute of Physics, Rostock, Germany

Observations: Autobahn from Munich

Color coded contour plots of daily speed of traffic. Levels: 80 (blue), 60, 50, 40, 30 and 20 (red) km/h

COST ACTION P-10 - p. $2 / 7$

What is a traffic breakdown?

A traffic breakdown is defined (usually based on 5 minutes measurement interval data) as a

- speed drop $\Delta v>15 \mathrm{~km} / \mathrm{h}$
- mean velocity after speed drop $v_{\text {final }}<75 \mathrm{~km} / \mathrm{h}$
- traffic volume before speed drop $q>1000 \mathrm{veh} / \mathrm{h} /$ lane

Example of stochastic trajectory

Definition of car cluster size $n(t)$

Balance equation

Stochastic master equation

$$
\begin{aligned}
\frac{\partial P(n, t)}{\partial t}= & w_{+}(n-1) P(n-1, t)+w_{-}(n+1) P(n+1, t) \\
& -\quad\left[w_{+}(n)+w_{-}(n)\right] P(n, t)
\end{aligned}
$$

Our car cluster model:

- inflow or attachment rate

$$
w_{+}(n)=q_{i n}(n) \approx q
$$

- escape or detachment rate

$$
w_{-}(n)=q_{o u t}(n) \approx 1 / \tau
$$

Nucleation on highways

Probabilistic description of pattern formation:
Condensation of clusters by drift and diffusion

Nucleation reactor (Szilard model)

Vehicular channel forming jams
q [veh/h] = traffic flow or traffic volume (from net time gap for a freely moving car)
$n=$ cluster size or queue length (number of congested vehicles) as stochastic variable
$\tau[\tau \approx 1.5 \mathrm{~s}]=$ characteristic time needed for the first car leaving the cluster to become free

Cumulative breakdown distribution

Defining $W\left(T_{\text {obs }}, q\right)=\int_{0}^{T_{\text {obs }}} \mathcal{P}(T ; q) d T$ in relation to measurements. $T_{o b s}$ is called observation time.
Data from Regler \& Brilon (Bochum, 2004) for observation time interval 5 min.

References

- Probabilistic description of traffic breakdown by R. Kühne, R. Mahnke et al., Physics Review E, vol. 65 (2002) 066125
- Review Probabilistic description of traffic flow by R. Mahnke, J. Kaupužs and I. Lubashevsky, Physics Reports, vol. 408 (March 2005), Nos. 1-2
(http://www.elsevier.com/locate/physrep)

