Multi-asset minority games

A De Martino (Roma)
Joint work with G Bianconi and M Marsili (Trieste), and FF Ferreira (Sao Paulo)
I. Minority Games with one asset :
a. Economics : competition under uncertainty, inductive reasoning
b. Physics : phase transition, anomalous fluctuations
c. Mathematics : exact solution
2. Minority Games with many assets :
a. how do speculators distribute their trading volume depending on the information content of the different assets?
b. how do incentives to trade affect the composition of the portfolios?
c. how does speculative trading "dress" financial correlations?
d. phase structure?
physics/0603152

Minority game basics

a. Traders react to the receipt of public information $\mu(t)$ by formulating a simple binary bid (buy/sell) $\quad b_{i}(t) \in\{-1,1\}$
b. They receive the payoff $-b_{i}(t) A(t) \quad, \quad A(t)=\sum_{i} b_{i}(t)$
c. They have fixed prescribed decision schemes ("trading strategies")
d. Agents are inductive : they keep track of the performance of each of their strategies and use at each time step the one that performed better in the past

$$
r(t) \equiv \log p(t)-\log p(t-1) \propto A(t)
$$

Information : exogenous/endogenous

$$
\mu(t) \in\{1, \ldots, P\}, \quad \log P \simeq \text { memory of agents }
$$

Trading strategies : quenched disorder/heterogeneity

Phase transition

$$
\begin{gathered}
\alpha<\alpha_{c} \\
\langle A \mid \mu\rangle=0 \forall \mu \rightarrow \text { unpredictable } \\
\text { dynamics is not ergodic }
\end{gathered}
$$

$\alpha>\alpha_{c}$

$\exists \mu$ s.t. $\langle A \mid \mu\rangle \neq 0 \rightarrow$ predictable dynamics is ergodic

Many-assets model

Trading strategy : fixed vector $\boldsymbol{a}_{i g}=\left\{a_{i g}^{\mu}\right\}, g \in\{1, \ldots, S\}$

$$
\text { which strategy? } \longrightarrow g_{i}(t)=\arg \max _{g} U_{i g}(t)
$$

$$
\begin{aligned}
& \text { choice }, \text { return } \rightarrow b_{i}(t)=a_{i, g_{i}(t)}^{\mu(t)} \rightarrow A(t)=\sum_{i} b_{i}(t) \\
& \text { learning } \rightarrow \\
& U_{i g}(t+1)-U_{i g}(t)=-a_{i g}^{\mu(t} A(t)>N
\end{aligned}
$$

Many assets : each strategy refers to a different asset $\sigma \in\{1, \ldots, S\}$

$$
\begin{gathered}
\text { which asset? } \longrightarrow \begin{array}{l}
s_{i}(t)=\arg \max _{\sigma} U_{i \sigma}(t) \\
\text { choice , return } \\
\text { learning }
\end{array} b_{i}(t)=a_{i, s_{i}(t)}^{\mu_{\sigma}(t)} \rightarrow A_{\sigma}(t)=\sum_{i} a_{i \sigma}^{\mu_{\sigma}(t)} \delta_{\sigma, s_{i}(t)} \\
\left.U_{i \sigma}(t+1)-U_{i \sigma}(t)=-a_{i \sigma}^{\mu(t} A_{\sigma}(t)\right\rangle N \\
\mu_{\sigma} \in\left\{1, \ldots, P_{\sigma}\right\}
\end{gathered} \begin{aligned}
& \text { no correlation } \Rightarrow\left\langle A_{+} A_{-}\right\rangle \simeq 0
\end{aligned}
$$

Two-assets model

Phase diagram

$$
\alpha_{\sigma}=P_{\sigma} / N \quad \sigma \in\{-1,1\}
$$

$H=\sum_{\sigma} H_{\sigma} \quad H_{\sigma}=\frac{1}{P_{\sigma}} \sum_{\mu_{\sigma}}\left\langle A_{\sigma} \mid \mu_{\sigma}\right\rangle^{2}$

agents are captured by information-poor markets!

Two-assets model : grand-canonical

Two types of traders :
Speculators have incentives to trade and may abstain Producers always trade (provide extra information)

$$
N=P_{\sigma} / \alpha_{\sigma} \text { speculators }, N_{p}^{\sigma}=n_{p} P_{\sigma} \text { producers }
$$

Dynamics of speculators

which asset?
$s_{i}(t)=\arg \max _{\sigma} U_{i \sigma}(t)$
choice, return \rightarrow

$$
\text { learning } \longrightarrow
$$

$\phi_{i \sigma}(t)=\delta_{s_{i}(t), \sigma}\left[U_{i \sigma}(t)\right] \rightarrow A_{\sigma}(t)=B_{\sigma}(t)+\sum_{i} a_{i \sigma}^{\mu_{\sigma}(t)} \phi_{i \sigma}(t)$
$U_{i \sigma}(t+1)-U_{i \sigma}(t)=-a_{i \sigma}^{\mu_{\sigma}(t)} A_{\sigma}(t)-\epsilon_{i}$
$\epsilon_{i}>0$ positive incentive ("risk prone")
$\epsilon_{i}<0$ negative incentive ("risk averse")

Results

$$
m=\frac{1}{N_{s}} \sum_{\text {spec. }}\left(\left\langle\phi_{i,+}\right\rangle-\left\langle\phi_{i,-}\right\rangle\right)
$$

Phase diagram

$\epsilon>0$: improvement!

Outlook

- Speculative trading does not contribute sensibly to financial correlations
$>$ This may change when agents take risk into account (lowfrequency strategies)
- When there are positive incentives to trade, speculators invest preferentially in the asset with the smallest information content
$>$ This is due to the fact that if speculators are forced to trade they contribute to information asymmetries
- The situation changes when speculators have no incentive to trade, other than making a profit
- Theory : static and dynamical solutions
- Open : Interacting markets? Multiple signals?
physics/0603152
http://chimera.roma1.infn.it/ANDREA

