Multi-asset minority games

A De Martino (Roma)

Joint work with G Bianconi and M Marsili (Trieste), and FF Ferreira (Sao Paulo)

- I. Minority Games with **one** asset :
 - a. Economics : competition under uncertainty, inductive reasoning
 - b. Physics : phase transition, anomalous fluctuations
 - c. Mathematics : exact solution
- 2. Minority Games with **many** assets :
 - a. how do speculators distribute their trading volume depending on the information content of the different assets?
 - b. how do incentives to trade affect the composition of the portfolios?
 - c. how does speculative trading "dress" financial correlations?
 - d. phase structure?

physics/0603152

Minority game basics

- a. Traders react to the receipt of public information $\mu(t)$ by formulating a simple binary bid (buy/sell) $b_i(t) \in \{-1, 1\}$
- b. They receive the payoff $-b_i(t)A(t)$, $A(t) = \sum b_i(t)$
- c. They have fixed prescribed decision schemes ("trading strategies")
- d. Agents are inductive : they keep track of the performance of each of their strategies and use at each time step the one that performed better in the past

$$r(t) \equiv \log p(t) - \log p(t-1) \propto A(t)$$

Information : exogenous/endogenous

 $\mu(t) \in \{1, \ldots, P\}$, $\log P \simeq \text{memory of agents}$

Trading strategies : quenched disorder/heterogeneity

Phase transition

Many-assets model

Trading strategy: fixed vector $a_{ig} = \{a_{ig}^{\mu}\}$, $g \in \{1, ..., S\}$ which strategy? \rightarrow $g_i(t) = \arg \max_g U_{ig}(t)$ choice, return \rightarrow $b_i(t) = a_{i,g_i(t)}^{\mu(t)} \rightarrow A(t) = \sum_i b_i(t)$ learning \rightarrow $U_{ig}(t+1) - U_{ig}(t) = -a_{ig}^{\mu(t)}A(t)/N$

Many assets : each strategy refers to a different asset $\sigma \in \{1, \dots, S\}$

which asset?

$$s_i(t) = \arg \max_{\sigma} U_{i\sigma}(t)$$

choice, return
 $b_i(t) = a_{i,s_i(t)}^{\mu_{\sigma}(t)} \rightarrow A_{\sigma}(t) = \sum_{i} a_{i\sigma}^{\mu_{\sigma}(t)} \delta_{\sigma,s_i(t)}$
learning
 $U_{i\sigma}(t+1) - U_{i\sigma}(t) = -a_{i\sigma}^{\mu(t)} A_{\sigma}(t) N$
 $\mu_{\sigma} \in \{1, \dots, P_{\sigma}\}$ no correlation $\Rightarrow \langle A_+A_- \rangle \simeq 0$

Two-assets model

Two-assets model : grand-canonical

Two types of traders :

Speculators have incentives to trade and may abstain **Producers** always trade (provide extra information)

$$N = P_{\sigma}/\alpha_{\sigma}$$
 speculators, $N_p^{\sigma} = n_p P_{\sigma}$ producers

Dynamics of speculators

Results

Outlook

- Speculative trading does not contribute sensibly to financial correlations
 - > This may change when agents take risk into account (low-frequency strategies)
- When there are positive incentives to trade, speculators invest preferentially in the asset with the smallest information content
 - > This is due to the fact that if speculators are forced to trade they contribute to information asymmetries
- The situation changes when speculators have no incentive to trade, other than making a profit
- Theory : static and dynamical solutions
- Open : Interacting markets? Multiple signals?

physics/0603152

http://chimera.romal.infn.it/ANDREA