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From "binary” networks to weighted networks

Complex networks: a way of looking at complex systems
Elements = nodes

Interactions = links

Interaction (or flow) strengths = link weights

E.g. traffic networks, social networks, market interactions,
metabolic networks, ...
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How to characterize weighted networks?

Some usual characteristics are straightforward
to generalize:

vertex degree k; — vertex strength! S, = Z Wi
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Others, like the clustering coefficient, less obvious

In addition, novel ways of investigating weight-topology
correlations are needed

[1] A. Barrat, M. Barthélemy, R. Pastor-Satorras, A. Vespignani, Proc. Natl. Acad. Sci. USA 101,

3747 (2004)



Outline

Beyond pure topology: weighted networks
Clustering & subgraph intensity
Weighted motif statistics




The clustering coefficient

* The unweighted clustering coefficient measures to
what extent the neighbours of a vertex are connected,
l.e. how many triangles exist around the vertex

clustering coefficient at vertex i:

"how many of
these links C = # of triangles
exist?” I = # of possible triangles
_ 1:i
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Subgraph intensity

* Consider an undirected weighted network with w;>0

 Define the intensity I(g) of a particular subgraph g with
vertices v, and links |, s.t. |I,| = the number of links in g

as

Schematic for
a triangle: one low

weight results in
low intensity




The weighted clustering coefficient

* Normalize weights so that | =1 if all weights equal to
the maximum weight (of the network or local)

W < W, /mi?x(wij)

e Replace the number of triangles with the sum of their
Intensities:

21,

« Range correct: éi = [O,l]

e Equals the unweighted C when all weights in the
network are equal

k-1 kK 1)Zk( W)



Example: asset graph & Black Monday

Average clustering coefficient

"Asset graph”! calculated
from stock return time
series: 477 NYSE stocks,
daily returns within 4-year
time windows —
correlation matrix —
weighted network
(highest correlations only)

unweighteq

Edge weights =
correlations

Black Monday ._ m
(10/19/1987) causes a |

temporary Change |n th - 1984 1986 19881:."1990 A 1992 1994 1996 1998
network, affecting both Ime
topology and weights

tering coefficient

1J.P. Onnela et al, PRE 68, 056110 (2003).
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Characterizing Weighted Motifs

« Unweighted: "Frequently occurring subgraphs?

« frequently occurring subgraphs are related to
system functionality

 Weighted:

Motif = a set of topologically equivalent subgraphs

Motif intensity = sum of subgraph intensities

 Compare motif intensities (e.g. using Z-score),
or intensity distributions of subgraphs,
to randomized reference

1 R. Milo et al, Science 298, 824 (2002)



Intensity and Coherence of Subgraphs

INTENSITY COHERENCE

Coherence
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Intensity Distributions in the Mobile
Communication Network

» Network: ~4 mill. mobile
telephone users, edge
weights = communication
frequencies

BLUE: EMPIRICAL

RED: REFERENCE

ENSEMBLE = EMPIRICAL
WITH PERMUTED
WEIGHTS

* Fully connected cliques
have larger intensities
in the empirical network
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Coherence Distributions in the Mobile
Communication Network

» Network: ~4 mill. mobile
telephone users, edge
weights = communication
frequencies

BLUE: EMPIRICAL

RED: WEIGHTS
PERMUTED

* Fully connected cliques
are more coherent
in the empirical network

 — high weight edges are
concentrated in cliques
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THANK YOU!

J.-P. Onnela, J. Saramaki, J. Kertész, and K. Kaski:

Intensity and coherence of motifs in weighted complex
networks, Phys. Rev. E 71, 065103 (2005)
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