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From ”binary” networks to weighted networksFrom ”binary” networks to weighted networks

• Complex networks: a way of looking at complex systems
• Elements ⇒ nodes
• Interactions ⇒ links
• Interaction (or flow) strengths ⇒ link weights
• E.g. traffic networks, social networks, market interactions, 

metabolic networks, …



How to characterize weighted networks?How to characterize weighted networks?
• Some usual characteristics are straightforward

to generalize:

vertex degree ki → vertex strength1

• Others, like the clustering coefficient, less obvious

• In addition, novel ways of investigating weight-topology
correlations are needed
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[1] A. Barrat, M. Barthélemy, R. Pastor-Satorras, A. Vespignani, Proc. Natl. Acad. Sci. USA 101, 
3747 (2004)
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The clustering coefficientThe clustering coefficient

i
Ci = # of triangles

# of possible triangles

clustering coefficient at vertex i:
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”how many of
these links 
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• The unweighted clustering coefficient measures to 
what extent the neighbours of a vertex are connected, 
i.e. how many triangles exist around the vertex



Subgraph intensitySubgraph intensity

• Consider an undirected weighted network with wij>0

• Define the intensity I(g) of a particular subgraph g with
vertices vg and links lg s.t. |lg| = the number of links in g
as
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Schematic for 
a triangle: one low
weight results in
low intensity
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The weighted clustering coefficientThe weighted clustering coefficient
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• Normalize weights so that IΔ=1 if all weights equal to 
the maximum weight (of the network or local)

• Replace the number of triangles with the sum of their 
intensities:

• Range correct:

• Equals the unweighted C when all weights in the 
network are equal 
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Example: asset graph & Black MondayExample: asset graph & Black Monday
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Average clustering coefficient
• ”Asset graph”1 calculated

from stock return time
series: 477 NYSE stocks,
daily returns within 4-year 
time windows →
correlation matrix →
weighted network
(highest correlations only)

• Edge weights = 
correlations

• Black Monday 
(10/19/1987) causes a 
temporary change in the 
network, affecting both 
topology and weights

1J.P. Onnela et al, PRE 68, 056110 (2003).
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Characterizing Weighted MotifsCharacterizing Weighted Motifs

• Unweighted: ”Frequently occurring subgraphs”

• frequently occurring subgraphs are related to 
system functionality

• Weighted:

Motif = a set of topologically equivalent subgraphs

Motif intensity = sum of subgraph intensities

• Compare motif intensities (e.g. using Z-score), 
or intensity distributions of subgraphs,
to randomized reference
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Intensity and Coherence of SubgraphsIntensity and Coherence of Subgraphs
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Intensity Distributions in the Mobile
Communication Network

Intensity Distributions in the Mobile
Communication Network

• Network: ~4 mill. mobile
telephone users, edge 
weights = communication
frequencies

• Fully connected cliques
have larger intensities
in the empirical network
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Coherence Distributions in the Mobile
Communication Network

Coherence Distributions in the Mobile
Communication Network

• Network: ~4 mill. mobile
telephone users, edge 
weights = communication
frequencies

• Fully connected cliques
are more coherent
in the empirical network

• → high weight edges are
concentrated in cliques
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RED: WEIGHTS 
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THANK YOU!THANK YOU!

J.-P. Onnela, J. Saramäki, J. Kertész, and K. Kaski: 
Intensity and coherence of motifs in weighted complex 
networks, Phys. Rev. E 71, 065103 (2005)
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