Seminar at VU MIF: Modeling power-law distribution, 1/f noise and financial markets using stochastic differential equations

Topic: "Modeling power-law distribution, 1/f noise and financial markets using stochastic differential equations"

Speaker: habil. dr. Bronislovas Kaulakys

When? 14th of May, 17:00.

Where? VU Faculty of Mathematics and Informatics (Naugarduko g. 24, Vilnius), 400 auditorium.

Organized by: Department of the Mathematical Analysis of the VU MIF.

Prisoner's dilemma

Previously we wrote about mathematical "puzzle" originating from a TV game (see the description of the Monty Hall problem). This time we shall consider the opposite case - the mathematical "game" used as a base for a TV game. Watch a fragment of the "Golden Balls" final stage called "Split or steal".

The game is very simple, yet about what constitutes an optimal play or correct solution we could argue a lot. It is even used to understand social behavior in humans [1].

References

  • T. Grund, C. Waloszek, D. Helbing. How Natural Selection Can Create Both Self- and Other-Regarding Preferences, and Networked Minds. Scientific Reports 3: 1480 (2013). doi: 10.1038/srep01480.

RCL: Call for applications for Students' Research Practice in Lithuania in summer 2013

Research Council of Lithuania has announced a call for applications for students' research practice in Lithuania in summer of 2013. The contributors towards Physics of Risk website, dr. (HP) Vygintas Gontis and PhD student Aleksejus Kononovicius, offer two topics for the research practice. The offered topics are mainly based on the following topics, previously published on this website:

  • Economic convergence as thermodynamic appreciation of real currency exchange rate
  • Agents-leaders influence on the Kirman’s herding model dynamics

More information is available from the Research Council of Lithuania website.

Randomly generated strange attractors HTML5 applet

Previously we wrote about randomly generated attractors. That time we have used Wolfram CDF technology to power the interactive applet. This technology has a serious drawback that you have to have installed specific additional software to be able to use it. As of now we have replaced the old app with HTML5-based interactive applet. This applet can be run on almost any modern web browser without a need to have any additional software preinstalled.

The new applet can be found in the previous post.

The Saint Petersburg paradox

In the 1738, Daniel Bernoulli, the very same known for his contribution to fluid dynamics, in his paper in the "Commentaries of the Imperial Academy of Science of Saint Petersburg" described an interesting paradox. Let us assume that we have a fair 50-50 game in which the host tosses a coin until the tail appears. After each toss he pays a player \( 2^n \) (where \( n \) is a number of the toss) of money. The problem in question is - what is an optimal price for the game? Namely how much money the host should ask from a player, that he would be still motivated to play the game, yet also preventing unnecessary losses by the host.