One year running

A year has passed since the opening of the renew Physics of Risk website. This year was highly productive for us, the contributors. We have published 7 new econophysical, 1 fractal + 3 stochastic + 3 agent-based, models and 18 models of varying business processes. Some of the models belonging to these two groups are very similar (we have found that most similar are Bass diffusion model and Unidirectional Kirman's model) thus serving as a proof for the potential applicability of the ideas developed in the econophysical sections. Sadly none of the business models are currently translated to English, though all econophysical models are available in English and Lithuanian languages as we have promised. This is due to different aims behind the sections - econophysical models represent scientific research done by the contributors, while business models were published as an introduction to computer modeling aimed at Lithuanian businessmen.

Slides from the “Science for business and society” conference

Slides from the closure conference were made available at mokslasplius.lt portal's science news website. Though note that slides are only available in Lithuanian (see here). We would like to remind you that Physics of Risk was represented by V. Gontis and V. Daniūnas, thus their slides might be the most useful for visitors of Physics of Risk website.

Multifractality of time series

One of the conclusions of fractal geometry is a fact that fractals unlike traditional Euclidean shapes lack characteristic scale. Those "fractured" objects are self-similar - defining geometry is clearly visible on multitude of scales. It is known that self-similarity is observed not only in formally defined geometric objects, such as Sierpinski triangle or Koch snowflake, but also in the surrounding nature. One of my most favorite examples is a comparison of tree, its branches and a leaf (for more inspiring examples see introduction of Fractals section) - they all have branching structure and something green filling the extra space in between.

The interesting thing, in context of the topic in focus, is that one can extend fractal formalism beyond formal or natural geometric shapes. It is also noticed that some of the natural processes exhibit fractal features in their time series! It is known that geoelectrical processes [1], heartbeat [2] and even human gait [3] time series posses this feature. While financial market, frequently analyzed on Physics of Risk website, time series are also no exception [4, 5]. Though the aforementioned time series are much more complex - they exhibit not monofractality (single manner self-similar behavior as the aforementioned formal geometric fractals do), but multifractality!

Conference "Science for business and society"

On the 25th of October, 2011 conference dedicated to the project Science for business and society will be held at hall in the Vilnius University, Institute of Theoretical Physics and Astronomy (A. Goštauto g. 12 - 432, Vilnius). This conference will mark ending of the currently ongoing project behind the Physics of Risk website. Main focus of this conference will be presentation of achieved results and discussion between business and scientists.

Presentations at 39th Lithuanian national physics conference

We have contributed two presentations towards the recent 39th Lithuanian National Physics Conference, which was organized by Vilnius University and Lithuanian Physicist Society. Oral presentation by A. Kononovicius was based on some of the models presented on Physics of Risk website, while poster presentation by R. Kazakevičius tackles very general problem related to the Physics of Risk.